Microbiota of an Italian Grana-Like Cheese during Manufacture and Ripening, Unraveled by 16S rRNA-Based Approaches

Author:

Alessandria Valentina1,Ferrocino Ilario1,De Filippis Francesca2,Fontana Mauro3,Rantsiou Kalliopi1,Ercolini Danilo2,Cocolin Luca1

Affiliation:

1. Department of Agricultural, Forest and Food Science, University of Turin, Grugliasco, Italy

2. Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Portici, Italy

3. Biraghi Spa, Cavallermaggiore (CN), Italy

Abstract

ABSTRACT The microbial ecology of cheese involves a rich and complex interaction between starter lactic acid bacteria and nonstarter lactic acid bacteria (NSLAB), mainly originating from raw milk and/or from the environment, that can contribute to the final characteristics of cheese. The aim of the present research was the exploration of the active microbiota by RNA-based approaches during the manufacturing and ripening of a Grana-like cheese. Reverse transcriptase PCR (RT-PCR)-denaturing gradient gel electrophoresis (DGGE) and RNA-based high-throughput sequencing were applied to profile microbial populations, while the enumeration of active bacteria was carried out by using quantitative PCR (qPCR). Three different cheese productions (named D, E, and F) collected in the same month from the same dairy plant were analyzed. The application of the qPCR protocol revealed the presence of 7 log CFU/ml of bacterial load in raw milk, while, during ripening, active bacterial populations ranged from <4 to 8 log CFU/ml. The natural whey starters used in the three productions showed the same microbiota composition, characterized by the presence of Lactobacillus helveticus and Lactobacillus delbrueckii . Nevertheless, beta-diversity analysis of the 16S rRNA sequencing data and RT-PCR-DGGE showed a clear clustering of the samples according to the three productions, probably driven by the different milks used. Milk samples were found to be characterized by the presence of several contaminants, such as Propionibacterium acnes , Acidovorax , Acinetobacter , Pseudomonas , and NSLAB. The core genera of the starter tended to limit the development of the spoilage bacteria only in two of the three batches. This study underlines the influence of different factors that can affect the final microbiota composition of the artisanal cheese. IMPORTANCE This study highlights the importance of the quality of the raw milk in the production of a hard cheese. Independent from the use of a starter culture, raw milk with low microbiological quality can negatively affect the populations of lactic acid bacteria and, as a consequence, impact the quality of the final product due to metabolic processes associated with spoilage bacteria.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3