OXA-24, a Novel Class D β-Lactamase with Carbapenemase Activity in an Acinetobacter baumannii Clinical Strain

Author:

Bou Germán1,Oliver Antonio1,Martínez-Beltrán Jesús1

Affiliation:

1. Servicio de Microbiologı́a, Hospital Ramón y Cajal, 28034 Madrid, Spain

Abstract

ABSTRACT Acinetobacter baumannii RYC 52763/97, a clinical isolate involved in a prolonged nosocomial outbreak at our hospital, was resistant to all β-lactams tested, including imipenem and meropenem, which had MICs of 128 and 256 μg/ml, respectively. This strain synthesized three β-lactamases: a plasmid-mediated TEM-1 β-lactamase (pI 5.4), an AmpC-type chromosomal cephalosporinase (pI 9.4), and a novel, presumptively chromosomally mediated OXA-related enzyme (pI 9.0) named OXA-24. After cloning and sequencing, the deduced amino acid sequence of the OXA-24 β-lactamase showed 40% homology with the OXA-10 (PSE-2) and OXA-7 β-lactamases, 39% homology with the OXA-11 and OXA-5 enzymes, and 33% homology with the LCR-1 β-lactamase. The amino acid sequence of the OXA-24 β-lactamase contained the STFK motif found in serine β-lactamases, but the typical class D triad KTG was replaced by KSG and the motif YGN was replaced by FGN. The OXA-24 β-lactamase hydrolyzed benzylpenicillin and cephaloridine but lacked activity against oxacillin, cloxacillin, and methicillin. The enzymatic activity was inhibited by chloride ions and by tazobactam (50% inhibitory concentration [IC 50 ], 0.5 μM), sulbactam (IC 50 , 40 μM), and clavulanic acid (IC 50 , 50 μM). Carbapenem MICs for an Escherichia coli transformant (pBMB-1) expressing the cloned OXA-24 enzyme had a fourfold increase. Relative V max / K m values of 13 and 6 were obtained with imipenem and meropenem, respectively, and a positive microbiological assay result with imipenem was obtained with a purified enzymatic extract of this transformant strain. Therefore, we consider this new β-lactamase to be involved in the carbapenem resistance of A. baumannii RYC 52763/97.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3