Affiliation:
1. Department of Pathology
2. The Ben May Institute for Cancer Research, The University of Chicago, 924 East 57th Street, Chicago, Illinois 60637
Abstract
ABSTRACT
NF-κB/Rel transcription factors are central to controlling programmed cell death (PCD). Activation of NF-κB blocks PCD induced by numerous triggers, including ligand engagement of tumor necrosis factor receptor (TNF-R) family receptors. The protective activity of NF-κB is also crucial for oncogenesis and cancer chemoresistance. Downstream of TNF-Rs, this activity of NF-κB has been linked to the suppression of reactive oxygen species and the c-Jun-N-terminal-kinase (JNK) cascade. The mechanism by which NF-κB inhibits PCD triggered by chemotherapeutic drugs, however, remains poorly understood. To understand this mechanism, we sought to identify unrecognized protective genes that are regulated by NF-κB. Using an unbiased screen, we identified the basic-helix-loop-helix factor Twist-1 as a new mediator of the protective function of NF-κB. Twist-1 is an evolutionarily conserved target of NF-κB, blocks PCD induced by chemotherapeutic drugs and TNF-α in NF-κB-deficient cells, and is essential to counter this PCD in cancer cells. The protective activity of Twist-1 seemingly halts PCD independently of interference with cytotoxic JNK, p53, and p19
ARF
signaling, suggesting that it mediates a novel protective mechanism activated by NF-κB. Indeed, our data indicate that this activity involves a control of inhibitory Bcl-2 phosphorylation. The data also suggest that Twist-1 and -2 play an important role in NF-κB-dependent chemoresistance.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
127 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献