An Aeromonas caviae Genomic Island Is Required for both O-Antigen Lipopolysaccharide Biosynthesis and Flagellin Glycosylation

Author:

Tabei S. Mohammed B.1,Hitchen Paul G.2,Day-Williams Michaela J.1,Merino Susana3,Vart Richard2,Pang Poh-Choo2,Horsburgh Gavin J.1,Viches Silvia3,Wilhelms Markus3,Tomás Juan M.3,Dell Anne2,Shaw Jonathan G.1

Affiliation:

1. Unit of Infection and Immunity, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield S10 2RX, United Kingdom

2. Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AY, United Kingdom

3. Departamento Microbiología, Facultad Biología, Universidad Barcelona, Diagonal 645, 08071 Barcelona, Spain

Abstract

ABSTRACT Aeromonas caviae Sch3N possesses a small genomic island that is involved in both flagellin glycosylation and lipopolysaccharide (LPS) O-antigen biosynthesis. This island appears to have been laterally acquired as it is flanked by insertion element-like sequences and has a much lower G+C content than the average aeromonad G+C content. Most of the gene products encoded by the island are orthologues of proteins that have been shown to be involved in pseudaminic acid biosynthesis and flagellin glycosylation in both Campylobacter jejuni and Helicobacter pylori . Two of the genes, lst and lsg , are LPS specific as mutation of them results in the loss of only a band for the LPS O-antigen. Lsg encodes a putative Wzx flippase, and mutation of Lsg affects only LPS; this finding supports the notion that flagellin glycosylation occurs within the cell before the flagellins are exported and assembled and not at the surface once the sugar has been exported. The proteins encoded by flmA , flmB , neuA , flmD , and neuB are thought to make up a pseudaminic acid biosynthetic pathway, and mutation of any of these genes resulted in the loss of motility, flagellar expression, and a band for the LPS O-antigen. Furthermore, pseudaminic acid was shown to be present on both flagellin subunits that make up the polar flagellum filament, to be present in the LPS O-antigen of the A. caviae wild-type strain, and to be absent from the A. caviae flmD mutant strain.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3