A retention signal necessary and sufficient for Golgi localization maps to the cytoplasmic tail of a Bunyaviridae (Uukuniemi virus) membrane glycoprotein

Author:

Andersson A M1,Melin L1,Bean A1,Pettersson R F1

Affiliation:

1. Ludwig Institute for Cancer Research, Stockholm Branch, Sweden.

Abstract

Members of the Bunyaviridae family mature by a budding process in the Golgi complex. The site of maturation is thought to be largely determined by the accumulation of the two spike glycoproteins, G1 and G2, in this organelle. Here we show that the signal for localizing the Uukuniemi virus (a phlebovirus) spike protein complex to the Golgi complex resides in the cytoplasmic tail of G1. We constructed chimeric proteins in which the ectodomain, transmembrane domain (TMD), and cytoplasmic tail (CT) of Uukuniemi virus G1 were exchanged with the corresponding domains of either vesicular stomatitis virus G protein (VSV G), chicken lysozyme, or CD4, all proteins readily transported to the plasma membrane. The chimeras were expressed in HeLa or BHK-21 cells by using either the T7 RNA polymerase-driven vaccinia virus system or the Semliki Forest virus system. The fate of the chimeric proteins was monitored by indirect immunofluorescence, and their localizations were compared by double labeling with markers specific for the Golgi complex. The results showed that the ectodomain and TMD (including the 10 flanking residues on either side of the membrane) of G1 played no apparent role in targeting chimeric proteins to the Golgi complex. Instead, all chimeras containing the CT of G1 were efficiently targeted to the Golgi complex and colocalized with mannosidase II, a Golgi-specific enzyme. Conversely, replacing the CT of G1 with that from VSV G resulted in the efficient transport of the chimeric protein to the cell surface. Progressive deletions of the G1 tail suggested that the Golgi retention signal maps to a region encompassing approximately residues 10 to 50, counting from the proposed border between the TMD and the tail. Both G1 and G2 were found to be acylated, as shown by incorporation of [3H]palmitate into the viral proteins. By mutational analyses of CD4-G1 chimeras, the sites for palmitylation were mapped to two closely spaced cysteine residues in the G1 tail. Changing either or both of these cysteines to alanine had no effect on the targeting of the chimeric protein to the Golgi complex.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3