Roles of glycerol and glycerol-3-phosphate dehydrogenase (NAD+) in acquired osmotolerance of Saccharomyces cerevisiae

Author:

Blomberg A1,Adler L1

Affiliation:

1. Department of Marine Microbiology, University of Göteborg, Sweden.

Abstract

In a cell culture of Saccharomyces cerevisiae exponentially growing in basal medium, only 0.02% of the cells were osmotolerant, i.e., survived transfer to medium containing 1.4 M NaCl. Short-time conditioning in 0.7 M NaCl medium transformed the whole population into an osmotolerance phenotype. During this conditioning, the rate of formation of glycerol, the main compatible solute in S. cerevisiae, increased threefold and the specific activity of glycerol-3-phosphate dehydrogenase (NAD+) (GPDH) (EC 1.1.1.8) was enhanced sixfold. The apparent flux control coefficient for GPDH in the formation of glycerol was estimated to be 0.6. Glycerol production was also favored by regulated activities of alcohol dehydrogenase (EC 1.1.1.1) and aldehyde dehydrogenase [NAD(P)]+ (EC 1.2.1.5). About 50% of the total glycerol produced during conditioning in 0.7 M NaCl was retained intracellularly, and the increased glycerol accumulation was shown to be not merely a result of enhanced production rate but also of increased retention of glycerol. Washing the cells with solutions of lower salinities resulted in loss of glycerol, with retained levels proportional to the concentration of NaCl in the washing solution. Cycloheximide addition inhibited the development of acquired osmotolerance and conditioned cells washed free of glycerol retained a high degree of osmotolerance, which indicate that protein synthesis was required to establish the osmotolerance state.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 272 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3