periostin Null Mice Exhibit Dwarfism, Incisor Enamel Defects, and an Early-Onset Periodontal Disease-Like Phenotype

Author:

Rios Hector1,Koushik Shrinagesh V.2,Wang Haiyan2,Wang Jian2,Zhou Hong-Ming2,Lindsley Andrew2,Rogers Rhonda2,Chen Zhi1,Maeda Manabu23,Kruzynska-Frejtag Agnieszka4,Feng Jian Q.1,Conway Simon J.2

Affiliation:

1. Department of Oral Biology, School of Dentistry, University of Missouri—Kansas City, Kansas City, Missouri 64108

2. Cardiovascular Development Group, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202

3. Nara Medical University, Kashihara City, Nara 634-8521, Japan

4. Wroclaw Medical University, 50-367 Wrocław, Poland

Abstract

ABSTRACT Periostin was originally identified as an osteoblast-specific factor and is highly expressed in the embryonic periosteum, cardiac valves, placenta, and periodontal ligament as well as in many adult cancerous tissues. To investigate its role during development, we generated mice that lack the periostin gene and replaced the translation start site and first exon with a lacZ reporter gene. Surprisingly, although periostin is widely expressed in many developing organs, periostin -deficient ( peri lacZ ) embryos are grossly normal. Postnatally, however, ∼14% of the nulls die before weaning and all of the remaining peri lacZ nulls are severely growth retarded. Skeletal analysis revealed that trabecular bone in adult homozygous skeletons was sparse, but overall bone growth was unaffected. Furthermore, by 3 months, the nulls develop an early-onset periodontal disease-like phenotype. Unexpectedly, these mice also show a severe incisor enamel defect, although there is no apparent change in ameloblast differentiation. Significantly, placing the peri lacZ nulls on a soft diet that alleviated mechanical strain on the periodontal ligament resulted in a partial rescue of both the enamel and periodontal disease-like phenotypes. Combined, these data suggest that a healthy periodontal ligament is required for normal amelogenesis and that periostin is critically required for maintenance of the integrity of the periodontal ligament in response to mechanical stresses.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3