Human immunodeficiency virus type 1 variants with increased replicative capacity develop during the asymptomatic stage before disease progression

Author:

Connor R I1,Ho D D1

Affiliation:

1. Aaron Diamond AIDS Research Center, New York University School of Medicine, New York 10016.

Abstract

We examined the replicative properties of a series of sequential isolates and biological clones of human immunodeficiency virus type 1 (HIV-1) obtained from an individual who progressed from seroconversion to AIDS in approximately 5 years. HIV-1 isolated soon after seroconversion replicated slowly and to low levels in cultures of peripheral blood mononuclear cells; however, subsequent isolates obtained during asymptomatic infection showed a marked increase in replication kinetics. This was examined in more detail by using a panel of 35 biological clones of HIV-1 generated from sequential patient peripheral blood mononuclear cell samples. Each clone was evaluated for replication in primary macrophages and CD4+ T lymphocytes and for the ability to induce syncytium formation in MT-2 cell cultures. Consistent with earlier observations, we found that all of the clones isolated just after seroconversion were slowly replicating and non-syncytium inducing (NSI). However, NSI variants with increased replication kinetics in macrophages were identified soon thereafter. These variants preceded the appearance of NSI and syncytium-inducing variants, with rapid replication in both macrophages and CD4+ T lymphocytes. To determine whether changes in the rate of replication could be traced to the early stages of the virus life cycle, PCR assays were used to evaluate entry and reverse transcription of selected biological clones in macrophages and CD4+ T lymphocytes. We found there was no inherent block to entry or reverse transcription for the slowly replicating variants; however, this does not preclude the possibility that small differences in the rate of entry may account for larger differences in the replication kinetics over many cycles. Overall, our results demonstrate that rapidly replicating variants of HIV-1 emerge during the asymptomatic period in a patient who subsequently progressed clinically, suggesting that these variants may play an important role in HIV-1 pathogenesis.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3