Plasmid-Mediated Novel bla NDM-17 Gene Encoding a Carbapenemase with Enhanced Activity in a Sequence Type 48 Escherichia coli Strain

Author:

Liu Zhihai1,Wang Yang1,Walsh Timothy R.2,Liu Dejun1,Shen Zhangqi1,Zhang Rongmin1,Yin Wenjuan1,Yao Hong1,Li Jiyun1ORCID,Shen Jianzhong1

Affiliation:

1. Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China

2. Department of Medical Microbiology and Infectious Disease, Cardiff Institute of Infection & Immunity, Heath Park Hospital, Cardiff, United Kingdom

Abstract

ABSTRACT Carbapenem-resistant Enterobacteriaceae (CRE) have spread worldwide, leaving very few treatment options available. New Delhi metallo-beta-lactamase (NDM) is the main carbapenemase mediating CRE resistance and is of increasing concern. NDM-positive Enterobacteriaceae of human origin are frequently identified; however, the emergence of NDM, and particularly novel variants, in bacteria of food animal origin has never been reported. Here, we characterize a novel NDM variant (assigned NDM-17) identified in a β-lactam-resistant sequence type 48 (ST48) Escherichia coli strain that was isolated from a chicken in China. Compared to NDM-1, NDM-17 had three amino acid substitutions (V88L, M154L, and E170K) that confer significantly enhanced carbapenemase activity. Compared to NDM-5, NDM-17 had only one amino acid substitution (E170K) and slightly increased isolate resistance to carbapenem, as indicated by increased MIC values. The gene encoding NDM-17 ( bla NDM-17 ) was located on an IncX3 plasmid, which was readily transferrable to recipient E. coli strain J53 by conjugation, suggesting the possibility of the rapid dissemination of bla NDM-17 . Enzyme kinetics showed that NDM-17 could hydrolyze all β-lactams tested, except for aztreonam, and had a significantly higher affinity for all β-lactams tested than did NDM-5. The emergence of this novel NDM variant could pose a threat to public health because of its transferability and enhanced carbapenemase activity.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3