Five Fatty Aldehyde Dehydrogenase Enzymes from Marinobacter and Acinetobacter spp. and Structural Insights into the Aldehyde Binding Pocket

Author:

Bertram Jonathan H.1,Mulliner Kalene M.1,Shi Ke2,Plunkett Mary H.3,Nixon Peter1,Serratore Nicholas A.4,Douglas Christopher J.4,Aihara Hideki2,Barney Brett M.13

Affiliation:

1. Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, Minnesota, USA

2. Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA

3. Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, USA

4. Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA

Abstract

ABSTRACT Enzymes involved in lipid biosynthesis and metabolism play an important role in energy conversion and storage and in the function of structural components such as cell membranes. The fatty aldehyde dehydrogenase (FAldDH) plays a central function in the metabolism of lipid intermediates, oxidizing fatty aldehydes to the corresponding fatty acid and competing with pathways that would further reduce the fatty aldehydes to fatty alcohols or require the fatty aldehydes to produce alkanes. In this report, the genes for four putative FAldDH enzymes from Marinobacter aquaeolei VT8 and an additional enzyme from Acinetobacter baylyi were heterologously expressed in Escherichia coli and shown to display FAldDH activity. Five enzymes (Maqu_0438, Maqu_3316, Maqu_3410, Maqu_3572, and the enzyme reported under RefSeq accession no. WP_004927398 ) were found to act on aldehydes ranging from acetaldehyde to hexadecanal and also acted on the unsaturated long-chain palmitoleyl and oleyl aldehydes. A comparison of the specificities of these enzymes with various aldehydes is presented. Crystallization trials yielded diffraction-quality crystals of one particular FAldDH (Maqu_3316) from M. aquaeolei VT8. Crystals were independently treated with both the NAD + cofactor and the aldehyde substrate decanal, revealing specific details of the likely substrate binding pocket for this class of enzymes. A likely model for how catalysis by the enzyme is accomplished is also provided. IMPORTANCE This study provides a comparison of multiple enzymes with the ability to oxidize fatty aldehydes to fatty acids and provides a likely picture of how the fatty aldehyde and NAD + are bound to the enzyme to facilitate catalysis. Based on the information obtained from this structural analysis and comparisons of specificities for the five enzymes that were characterized, correlations to the potential roles played by specific residues within the structure may be drawn.

Funder

HHS | National Institutes of Health

National Science Foundation

DOE | LDRD | Argonne National Laboratory

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3