Isocitrate dehydrogenase kinase/phosphatase: aceK alleles that express kinase but not phosphatase activity

Author:

Ikeda T1,LaPorte D C1

Affiliation:

1. Department of Biochemistry, University of Minnesota, Minneapolis 55455.

Abstract

For Escherichia coli, growth on acetate requires the induction of the enzymes of the glyoxylate bypass, isocitrate lyase and malate synthase. The branch point between the glyoxylate bypass and the Krebs cycle is controlled by phosphorylation of isocitrate dehydrogenase (IDH), inhibiting that enzyme's activity and thus forcing isocitrate through the bypass. This phosphorylation cycle is catalyzed by a bifunctional enzyme, IDH kinase/phosphatase, which is encoded by aceK. We have employed random mutagenesis to isolate novel alleles of aceK. These alleles were detected by the loss of ability to complement an aceK null mutation. The products of one class of these alleles retain IDH kinase activity but have suffered reductions in IDH phosphatase activity by factors of 200 to 400. Selective loss of the phosphatase activity also appears to have occurred in vivo, since cells expressing these alleles exhibit phenotypes which are reminiscent of strains lacking IDH; these strains are auxotrophic for glutamate. Assays of cell-free extracts confirmed that this phenotype resulted from nearly quantitative phosphorylation of IDH. The availability of these novel alleles of aceK allowed us to assess the significance of the precise control which is a characteristic of the IDH phosphorylation cycle in vivo. The fractional phosphorylation of IDH was varied by controlled expression of one of the mutant alleles, aceK3, in a wild-type strain. Reduction of IDH activity to 50% of the wild-type level did not adversely affect growth on acetate. However, further reductions inhibited growth, and growth arrest occurred when the IDH activity fell to 15% of the wild-type level. Thus, although wild-type cells maintain a precise effective IDH activity during growth on acetate, this precision is not critical.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference38 articles.

1. DEK 2010 his 4 thi-l rpsL31 lacBKI sfiB 20

2. DEK 2011 aceKI his 4 thi-l rpsL31 lacBKI sfiB 20

3. DL16 aceKI recA39 sr1-300::TnlO his 4 thi-J rpsL31 lacBKI sfiB 16

4. DL18 recA39 sr1-300::TnlO his 4 thi-l rpsL31 lacBKI sfiB

5. JC10240 recA39 sr1-300::TnlO thr relA ilv spoT thi rpsE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3