Porcine deltacoronavirus accessory protein NS6 harnesses VPS35-mediated retrograde trafficking to facilitate efficient viral infection

Author:

Fang Puxian12ORCID,Zhang Huichang12,Cheng Ting12,Ding Tong12,Xia SiJin12,Xiao Wenwen12,Li Zhuang12,Xiao Shaobo12ORCID,Fang Liurong12ORCID

Affiliation:

1. National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, China

2. The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production , Wuhan, China

Abstract

ABSTRACT Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus with the potential to infect humans. Accessory protein NS6, encoded by PDCoV, is a key factor required for optimal viral replication. However, the precise mechanism(s) used by PDCoV NS6 to function remains largely unclear. The retromer is an evolutionarily highly conserved protein complex that plays an important role in normal cellular biological processes and viral replication. In this study, we identified VPS35, a subunit of the retromer complex, as a potential NS6-interacting protein via immunoprecipitation and mass spectrometry analysis in the context of PDCoV infection. Furthermore, we confirmed the interaction of VPS35 with NS6 by co-immunoprecipitation in both an overexpression system and PDCoV-infected cells. Knockdown of VPS35 by specific small interfering RNA inhibited wild-type PDCoV infection but did not suppress the infection of recombinant PDCoVs with an NS6 deletion, demonstrating that the VPS35-NS6 interaction is required for the proviral function of VPS35. We further demonstrated that the lysosomal pathway and Golgi trafficking are required for efficient PDCoV infection and that depletion of VPS35 prevented retrograde transport of PDCoV NS6 from endosomes to the Golgi, resulting in its lysosomal degradation and the inhibition of viral production. Taken together, our findings are the first to identify VPS35 as a critical host factor required for PDCoV to establish productive infection, revealing a novel evasion mechanism of PDCoV. IMPORTANCE Retrograde transport has been reported to be closely associated with normal cellular biological processes and viral replication. As an emerging enteropathogenic coronavirus with zoonotic potential, porcine deltacoronavirus (PDCoV) has attracted considerable attention. However, whether retrograde transport is associated with PDCoV infection remains unclear. Our present study demonstrates that retromer protein VPS35 acts as a critical host factor that is required for PDCoV infection. Mechanically, VPS35 interacts with PDCoV NS6, mediating the retrograde transport of NS6 from endosomes to the Golgi and preventing it from lysosomal degradation. Recombinant PDCoVs with an NS6 deletion display resistance to VPS35 deficiency. Our work reveals a novel evasion mechanism of PDCoV that involves the manipulation of the retrograde transport pathway by VPS35, providing new insight into the mechanism of PDCoV infection.

Funder

MOST | National Key Research and Development Program of China

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3