An alternatively spliced mRNA from the AP-2 gene encodes a negative regulator of transcriptional activation by AP-2.

Author:

Buettner R,Kannan P,Imhof A,Bauer R,Yim S O,Glockshuber R,Van Dyke M W,Tainsky M A

Abstract

AP-2 is a retinoic acid-inducible and developmentally regulated activator of transcription. We have cloned an alternative AP-2 transcript (AP-2B) from the human teratocarcinoma cell line PA-1, which encodes a protein differing in the C terminus from the previously isolated AP-2 protein (AP-2A). This protein contains the activation domain of AP-2 and part of the DNA binding domain but lacks the dimerization domain which is necessary for DNA binding. Analysis of overlapping genomic clones spanning the entire AP-2 gene proves that AP-2A and AP-2B transcripts are alternatively spliced from the same gene. Both transient and stable transfection experiments show that AP-2B inhibits AP-2 transactivator function, as measured by an AP-2-responsive chloramphenicol acetyltransferase reporter plasmid. Furthermore, constitutive AP-2B expression in PA-1 cells causes a retinoic acid-resistant phenotype, anchorage-independent growth in soft agar, and tumorigenicity in nude mice, in a fashion similar to transformation of these cells by oncogenes. To determine the mechanism by which AP-2B exerts its inhibitory function, we purified bacterially expressed AP-2A and AP-2B proteins. While bacterial AP-2B does not bind an AP-2 consensus site, it strongly inhibits binding of the endogenous AP-2 present in PA-1 cell nuclear extracts. However, DNA sequence-specific binding of bacterially expressed AP-2A cannot be inhibited by bacterially expressed AP-2B. Therefore, inhibition of AP-2 activity by the protein AP-2B may require an additional factor or modification supplied by nuclear extracts.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3