Development of a mutant aerosolized ACE2 that neutralizes SARS-CoV-2 in vivo

Author:

Kober Daniel L.1ORCID,Caballero Van Dyke Marley C.2,Eitson Jennifer L.2,Boys Ian N.2,McDougal Matthew B.2,Rosenbaum Daniel M.3ORCID,Schoggins John W.2ORCID

Affiliation:

1. Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA

2. Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA

3. Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, Texas, USA

Abstract

ABSTRACT The rapid evolution of SARS-CoV-2 variants highlights the need for new therapies to prevent disease spread. SARS-CoV-2, like SARS-CoV-1, uses the human cell surface protein angiotensin-converting enzyme 2 (ACE2) as its native receptor. Here, we design and characterize a mutant ACE2 that enables rapid affinity purification of a dimeric protein by altering the active site to prevent autoproteolytic digestion of a C-terminal His 10 epitope tag. In cultured cells, mutant ACE2 competitively inhibits lentiviral vectors pseudotyped with spikes from multiple SARS-CoV-2 variants and infectious SARS-CoV-2. Moreover, the protein can be nebulized and retains virus-binding properties. We developed a system for the delivery of aerosolized ACE2 to K18-hACE2 mice and demonstrated protection by our modified ACE2 when delivered as a prophylactic agent. These results show proof-of-concept for an aerosolized delivery method to evaluate anti-SARS-CoV-2 agents in vivo and suggest a new tool in the ongoing fight against SARS-CoV-2 and other ACE2-dependent viruses. IMPORTANCE The rapid evolution of SARS-CoV-2 variants poses a challenge for immune recognition and antibody therapies. However, the virus is constrained by the requirement that it recognizes a human host receptor protein. A recombinant ACE2 could protect against SARS-CoV-2 infection by functioning as a soluble decoy receptor. We designed a mutant version of ACE2 with impaired catalytic activity to enable the purification of the protein using a single affinity purification step. This protein can be nebulized and retains the ability to bind the relevant domains from SARS-CoV-1 and SARS-CoV-2. Moreover, this protein inhibits viral infection against a panel of coronaviruses in cells. Finally, we developed an aerosolized delivery system for animal studies and show the modified ACE2 offers protection in an animal model of COVID-19. These results show proof-of-concept for an aerosolized delivery method to evaluate anti-SARS-CoV-2 agents in vivo and suggest a new tool in the ongoing fight against SARS-CoV-2.

Funder

HHS | NIH | National Institute of General Medical Sciences

Welch Foundation

Small Business Innovation Research

Burroughs Wellcome Fund

Publisher

American Society for Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3