Targeting the MEK1/2 pathway to combat Staphylococcus aureus infection and inflammation in cystic fibrosis

Author:

Zuiker Eryn123,Serpa Gregory123,De Mithu13,Liu Yiwei24,Wozniak Daniel J.24,Gowdy Kymberly M.13,Charron Jean56,Birket Susan E.78ORCID,Kiedrowski Megan R.78,Hemann Emily A.23,Long Matthew E.123ORCID

Affiliation:

1. Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center

2. Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University Wexner Medical Center

3. Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center

4. Department of Microbiology, The Ohio State University

5. Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval (Oncology Axis)

6. Département de Biologie Moléculaire, Biochimie Médicale and Pathologie, Université Laval

7. Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham

8. Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham

Abstract

ABSTRACT Staphylococcus aureus infections remain an ongoing challenge for people with cystic fibrosis (PwCF), with the increased global prevalence of multidrug-resistant strains requiring new therapeutic approaches. Our previous studies demonstrated anti-inflammatory effects of several MEK1/2 inhibitor compounds, including PD0325901, CI-1040, and trametinib, in human phagocytes from PwCF and a murine S. aureus pulmonary infection model (M. De, G. Serpa, E. Zuiker, K. B. Hisert, et al., Front Cell Infect Microbiol 14:1275940, 2024, https://doi.org/10.3389/fcimb.2024.1275940 ). A recently developed MEK1/2 inhibitor compound, ATR-002, has been recognized for its ability to exert direct antibacterial effects on gram-positive bacterial species, including S. aureus (C. Bruchhagen, M. Jarick, C. Mewis, T. Hertlein, et al., Sci Rep 8:9114, 2018, https://doi.org/10.1038/s41598-018-27445-7 ). However, whether ATR-002 elicits antibacterial effects on clinically relevant strains of S. aureus or anti-inflammatory effects is unknown. In this study, the effects of ATR-002 on human CF macrophage TLR2-induced pro-inflammatory cytokine secretion were evaluated, demonstrating that ATR-002 reduced TNF-α and IL-8 secretion induced by the TLR2 agonists FSL-1 or Pam3CSK4. The antibacterial effects of ATR-002 were evaluated by minimum inhibitory concentration testing using S. aureus clinical isolates obtained from PwCF. Utilization of a murine methicillin-resistant S. aureus (MRSA) pulmonary infection model further confirmed the in vivo anti-inflammatory and antibacterial effects of ATR-002. Finally, infection of wild-type and Mek2 KO mice revealed that loss of MEK2 was host-protective during MRSA pulmonary infection by reducing neutrophil-mediated inflammation without altering bacterial clearance. In summary, this study highlights the therapeutic potential of targeting the MEK1/2 pathway to combat MRSA pulmonary infections. IMPORTANCE Staphylococcus aureus infections pose a significant burden on global healthcare systems. Community-associated transmission of methicillin-resistant S. aureus (MRSA) and the increasing prevalence of other drug-resistant S. aureus isolates limit therapeutic options to combat this opportunistic pathogen. Infection-induced inflammation is a significant driver of tissue damage, especially in cystic fibrosis pulmonary infections. However, therapeutic strategies that can reduce inflammation without compromising host defense and bacterial clearance mechanisms are lacking. This study investigates the dual anti-inflammatory and antibacterial effects of a MEK1/2 inhibitor as a therapeutic strategy to target both host and pathogen with a single compound. This work also identifies host MEK2 as a specific target that can be modulated to reduce inflammation without impairing host defense against MRSA pulmonary infection. Results from this study can inform future human clinical trials to evaluate the ability of the MEK1/2 inhibitor compound ATR-002 to both combat S. aureus infections and reduce inflammation that accompanies these infections.

Funder

Cystic Fibrosis Foundation

HHS | National Institutes of Health

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3