Broad Specificity of Virus-Specific CD4 + T-Helper-Cell Responses in Resolved Hepatitis C Virus Infection

Author:

Day Cheryl L.12,Lauer Georg M.12,Robbins Gregory K.12,McGovern Barbara34,Wurcel Alysse G.124,Gandhi Rajesh T.12,Chung Raymond T.5,Walker Bruce D.12

Affiliation:

1. Partners AIDS Research Center

2. Infectious Disease Unit

3. Massachusetts General Hospital and Harvard Medical School, and Division of Infectious Diseases, New England Medical Center

4. Lemuel Shattuck Hospital Boston, Massachusetts

5. Gastrointestinal Unit

Abstract

ABSTRACT Vigorous virus-specific CD4 + T-helper-cell responses are associated with successful control of hepatitis C virus (HCV) and other human viral infections, but the breadth and specificity of responses associated with viral containment have not been defined. To address this we evaluated the HCV-specific CD4 + T-helper-cell response in HCV antibody-positive persons who lack detectable plasma viremia, and compared this response to that in persons with chronic HCV infection. Peripheral blood mononuclear cells were stimulated with HCV proteins, followed by measurement of HCV-specific CD4 + -T-cell responses to a comprehensive set of overlapping HCV peptides by intracellular gamma interferon production. In three persons with resolved HCV infection studied in detail, 13 to 14 epitopes were targeted, but none was recognized by all three. The 37 defined epitopes were predominantly distributed among the HCV proteins core, NS3, NS4, and NS5. In an expanded analysis of responses to these proteins in persons with resolved infection, an average of 10 epitopes was targeted, whereas in persons with chronic viremia never was more than one epitope targeted ( P < 0.001). This comprehensive analysis of the breadth and specificity of HCV-specific T-helper-cell responses indicates that up to 14 viral epitopes can be simultaneously targeted by circulating virus-specific CD4 + T helper cells in a controlled human viral infection. Moreover, these data provide important parameters for evaluation of candidate HCV vaccines, and provide rationale for immunotherapy in chronic HCV infection.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3