Probing keratinocyte and differentiation specificity of the human K5 promoter in vitro and in transgenic mice.

Author:

Byrne C,Fuchs E

Abstract

Keratins K5 and K14 form the extensive intermediate filament network of mitotically active basal cells in all stratified epithelia. We have explored the regulatory mechanisms governing cell-type-specific and differentiation stage-specific expression of the human K5 gene in transiently transfected keratinocytes in vitro and in transgenic mice in vivo. Six thousand base pairs of 5' upstream K5 sequence directed proper basal cell-specific expression in all stratified epithelia. Surprisingly, as few as 90 bp of the K5 promoter still directed expression to stratified epithelia, with expression predominantly in epidermis, hair follicles, and tongue. Despite keratinocyte-preferred expression, the truncated K5 promoter displayed departures from basal to suprabasal expression in epidermis and from outer root sheath to inner root sheath expression in the follicle, with some regional variations in expression as well. To begin to elucidate the molecular controls underlying the keratinocyte specificity of the truncated promoter, we examined protein-DNA interactions within this region. A number of keratinocyte nuclear proteins bind to a K5 gene segment extending from -90 to +32 bp and are functionally involved in transcriptional regulation in vitro. Interestingly, several of these factors are common to both the K5 and K14 promoters, although they appear to be distinct from those previously implicated in keratinocyte specificity. Mutagenesis studies indicate that factors binding in the vicinity of the TATA box and transcription initiation are responsible for the cell type specificity of the truncated K5 promoter.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 130 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3