Sporicidal Activity of Synthetic Antifungal Undecapeptides and Control of Penicillium Rot of Apples

Author:

Badosa Esther1,Ferré Rafael2,Francés Jesús1,Bardají Eduard2,Feliu Lidia2,Planas Marta2,Montesinos Emilio1

Affiliation:

1. Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA

2. LIPPSO, Department of Chemistry, University of Girona, Campus Montilivi, 17071 Girona, Spain

Abstract

ABSTRACT The antifungal activity of cecropin A(2-8)-melittin(6-9) hybrid undecapeptides, previously reported as active against plant pathogenic bacteria, was studied. A set of 15 sequences was screened in vitro against Fusarium oxysporum , Penicillium expansum , Aspergillus niger , and Rhizopus stolonifer . Most compounds were highly active against F. oxysporum (MIC < 2.5 μM) but were less active against the other fungi. The best peptides were studied for their sporicidal activity and for Sytox green uptake in F. oxysporum microconidia. A significant inverse linear relationship was observed between survival and fluorescence, indicating membrane disruption. Next, we evaluated the in vitro activity against P. expansum of a 125-member peptide library with the general structure R-X 1 KLFKKILKX 10 L-NH 2 , where X 1 and X 10 corresponded to amino acids with various degrees of hydrophobicity and hydrophilicity and R included different N-terminal derivatizations. Fifteen sequences with MICs below 12.5 μM were identified. The most active compounds were BP21 {Ac,F,V} and BP34 {Ac,L,V} (MIC < 6.25 μM), where the braces denote R, X 1 , and X 10 positions and where Ac is an acetyl group. The peptides had sporicidal activity against P. expansum conidia. Seven of these peptides were tested in vivo by evaluating their preventative effect of inhibition of P. expansum infection in apple fruits. The peptide Ts-FKLFKKILKVL-NH 2 (BP22), where Ts is a tosyl group, was the most active with an average efficacy of 56% disease reduction, which was slightly lower than that of a commercial formulation of the fungicide imazalil.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3