The military gear microbiome: risk factors surrounding the warfighter

Author:

Kok Car Reen1ORCID,Bram Zakariae2,Thissen James B.1,Horseman Timothy S.23,Fong Keith S. K.2,Reichert-Scrivner Susan A.2,Paguirigan Carmen2,O'Connor Kelsey2,Thompson Kristina2,Scheiber Alexander E.2,Mabery Shalini1,Ngauy Viseth2,Uyehara Catherine F.2,Be Nicholas A.1ORCID

Affiliation:

1. Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA

2. Tripler Army Medical Center, Honolulu, Hawaii, USA

3. School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA

Abstract

ABSTRACT Combat extremity wounds are highly susceptible to contamination from surrounding environmental material. This bioburden could be partially transferred from materials in immediate proximity to the wound, including fragments of the uniform and gear. However, the assessment of the microbial bioburden present on military gear during operational conditions of deployment or training is relatively unexplored. Opportunistic pathogens that can survive on gear represent risk factors for infection following injury, especially following combat blasts, where fibers and other materials are embedded in wounded tissue. We utilized 16S rRNA sequencing to assess the microbiome composition of different military gear types (boot, trouser, coat, and canteen) from two operational environments (training in Hawai’i and deployed in Indonesia) across time (days 0 and 14). We found that microbiome diversity, stability, and composition were dependent on gear type, training location, and sampling timepoint. At day 14, species diversity was significantly higher in Hawai’i samples compared to Indonesia samples for boot, coat, and trouser swabs. In addition, we observed the presence of potential microbial risk factors, as opportunistic pathogenic species, such as Acinetobacter , Pseudomonas, and Staphylococcus , were found to be present in all sample types and in both study sites. These study outcomes will be used to guide the design of antimicrobial materials and uniforms and for infection control efforts following combat blasts and other injuries, thereby improving treatment guidance during military training and deployment. IMPORTANCE Combat extremity wounds are vulnerable to contamination from environments of proximity to the warfighter, leading to potential detrimental outcomes such as infection and delayed wound healing. Therefore, microbial surveillance of such environments is necessary to aid the advancement of military safety and preparedness through clinical diagnostics, treatment protocols, and uniform material design.

Funder

Lawrence Livermore National Laboratory

Publisher

American Society for Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3