Integrase mutants of human immunodeficiency virus type 1 with a specific defect in integration

Author:

Taddeo B1,Haseltine W A1,Farnet C M1

Affiliation:

1. Division of Human Retrovirology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115.

Abstract

A previous genetic analysis of the human immunodeficiency virus type 1 integrase protein failed to identify single amino acid substitutions that only block the integration of viral DNA (C.-G. Shin, B. Taddeo, W.A. Haseltine, and C.M. Farnet, J. Virol. 68:1633-1642, 1994). Additional substitutions of amino acids that are highly conserved among retroviral integrases were constructed in human immunodeficiency virus type 1 and analyzed for their effects on viral protein synthesis and processing, virion morphology, and viral DNA synthesis and integration in an attempt to identify mutants with a specific defect in integration. Four single amino acid substitutions resulted in replication defective viruses. Conservative, single amino acid substitutions of the two invariant aspartic acid residues found in all retroviral integrases prevented the integration of viral DNA and had no detectable effect on the other stages in the viral replication cycle, indicating that these mutants exhibited a specific defect in integration. Mutations at two positions, S-81 and P-109, blocked the integration of viral DNA but also resulted in the production of viral particles that exhibited reduced reverse transcriptase activity, suggesting additional defects in viral replication. Substitution of the highly conserved amino acid T66 had no effect on viral replication in a CD4+ human T-cell line. This analysis extends the range of possible phenotypes that may be produced by single amino acid substitutions in conserved residues of the integrase protein.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3