Characterization of a Pseudomonas aeruginosa Fatty Acid Biosynthetic Gene Cluster: Purification of Acyl Carrier Protein (ACP) and Malonyl-Coenzyme A:ACP Transacylase (FabD)

Author:

Kutchma Alecksandr J.1,Hoang Tung T.1,Schweizer Herbert P.1

Affiliation:

1. Department of Microbiology, Colorado State University, Fort Collins, Colorado 80523

Abstract

ABSTRACT A DNA fragment containing the Pseudomonas aeruginosa fabD (encoding malonyl-coenzyme A [CoA]:acyl carrier protein [ACP] transacylase), fabG (encoding β-ketoacyl-ACP reductase), acpP (encoding ACP), and fabF (encoding β-ketoacyl-ACP synthase II) genes was cloned and sequenced. This fab gene cluster is delimited by the plsX (encoding a poorly understood enzyme of phospholipid metabolism) and pabC (encoding 4-amino-4-deoxychorismate lyase) genes; the fabF and pabC genes seem to be translationally coupled. The fabH gene (encoding β-ketoacyl-ACP synthase III), which in most gram-negative bacteria is located between plsX and fabD , is absent from this gene cluster. A chromosomal temperature-sensitive fabD mutant was obtained by site-directed mutagenesis that resulted in a W258Q change. A chromosomal fabF insertion mutant was generated, and the resulting mutant strain contained substantially reduced levels of cis -vaccenic acid. Multiple attempts aimed at disruption of the chromosomal fabG gene were unsuccessful. We purified FabD as a hexahistidine fusion protein (H 6 -FabD) and ACP in its native form via an ACP-intein-chitin binding domain fusion protein, using a novel expression and purification scheme that should be applicable to ACP from other bacteria. Matrix-assisted laser desorption–ionization spectroscopy, native polyacrylamide electrophoresis, and amino-terminal sequencing revealed that (i) most of the purified ACP was properly modified with its 4′-phosphopantetheine functional group, (ii) it was not acylated, and (iii) the amino-terminal methionine was removed. In an in vitro system, purified ACP functioned as acyl acceptor and H 6 -FabD exhibited malonyl-CoA:ACP transacylase activity.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3