Influenza Virus Vaccine Based on the Conserved Hemagglutinin Stalk Domain

Author:

Steel John1,Lowen Anice C.1,Wang Taia T.1,Yondola Mark1,Gao Qinshan1,Haye Kester1,García-Sastre Adolfo123,Palese Peter12

Affiliation:

1. Department of Microbiology, Mount Sinai School of Medicine, New York, New York, USA

2. Department of Medicine, Division of Infectious Diseases, Mount Sinai School of Medicine, New York, New York, USA

3. Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, New York, USA

Abstract

ABSTRACT Although highly effective in the general population when well matched to circulating influenza virus strains, current influenza vaccines are limited in their utility due to the narrow breadth of protection they provide. The strain specificity of vaccines presently in use mirrors the exquisite specificity of the neutralizing antibodies that they induce, that is, antibodies which bind to the highly variable globular head domain of hemagglutinin (HA). Herein, we describe the construction of a novel immunogen comprising the conserved influenza HA stalk domain and lacking the globular head. Vaccination of mice with this headless HA construct elicited immune sera with broader reactivity than those obtained from mice immunized with a full-length HA. Furthermore, the headless HA vaccine provided full protection against death and partial protection against disease following lethal viral challenge. Our results suggest that the response induced by headless HA vaccines is sufficiently potent to warrant their further development toward a universal influenza virus vaccine. IMPORTANCE Current influenza vaccines are effective against only a narrow range of influenza virus strains. It is for this reason that new vaccines must be generated and administered each year. We now report progress toward the goal of an influenza virus vaccine which would protect against multiple strains. Our approach is based on presentation to the host immune system of a region of the influenza virus—called a “headless hemagglutinin” (headless HA)—which is similar among a multitude of diverse strains. We show that vaccination of mice with a headless HA confers protection to these animals against a lethal influenza virus challenge, thereby demonstrating the viability of the approach. Through further development and testing, we predict that a single immunization with a headless HA vaccine will offer effective protection through several influenza epidemics.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3