Partial purification of adeno-associated virus Rep78, Rep52, and Rep40 and their biochemical characterization

Author:

Im D S1,Muzyczka N1

Affiliation:

1. Department of Microbiology, SUNY Stony Brook Medical School 11794-8621.

Abstract

We have used differential cell extraction and conventional chromatography to separate and partially purify the four adeno-associated virus (AAV) nonstructural proteins Rep78, Rep68, Rep52, and Rep40. In the cytoplasmic extracts Rep52 and Rep40 were present in greater abundance than Rep68 and Rep78, with Rep78 being the least abundant. In nuclear extracts the four Rep proteins were approximately equal in abundance. Regardless of the subcellular fraction examined, three of the Rep proteins (Rep78, Rep68, and Rep40) consisted of two protein species with slightly different mobilities during polyacrylamide gel electrophoresis. In contrast, Rep52 consisted of only one protein species. Both Rep78 and Rep68 were capable of binding efficiently to AAV terminal hairpin DNA substrates, but we could not detect site-specific DNA binding by Rep52 and Rep40. Like Rep68, Rep78 had both an ATP-dependent trs endonuclease and a DNA helicase activity. Both Rep78 and Rep68 cut the terminal AAV sequence at the same site (nucleotide 124). The binding, trs endonuclease, and DNA helicase activities comigrated during sucrose density gradient centrifugation with a mobility expected for a monomer of the protein, suggesting that the three biochemical activities were intrinsic properties of the larger Rep proteins. The chromatographic behavior and the DNA-binding properties of the four Rep proteins identified at least two domains within the rep coding region, an exposed hydrophobic domain within the C-terminal end (amino acids 578 to 621) and a region within the N terminus (amino acids 1 to 214) which was necessary for binding to the terminal repeat sequence. No site-specific nuclease activity was seen in the presence of nucleotide analogs ATP-gamma-S or AMP-PNP, suggesting that ATP hydrolysis was required for the endonuclease reaction. Furthermore, although ATP was the only cofactor which would support the trs endonuclease activity of Rep78, Rep68 nuclease activity was seen in the presence of several other nucleotide cofactors, including CTP, GTP, and UTP.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3