Affiliation:
1. United States Department of Agriculture—Agricultural Research Service
2. Department of Geology, University of Illinois at Urbana—Champaign, Urbana, Illinois
Abstract
ABSTRACT
Desulfitobacterium chlororespirans
has been shown to grow by coupling the oxidation of lactate to the metabolic reductive dehalogenation of
ortho
chlorines on polysubstituted phenols. Here, we examine the ability of
D. chlororespirans
to debrominate and deiodinate the polysubstituted herbicides bromoxynil (3,5-dibromo-4-hydroxybenzonitrile), ioxynil (3,5-diiodo-4-hydroxybenzonitrile), and the bromoxynil metabolite 3,5-dibromo-4-hydroxybenzoate (DBHB). Stoichiometric debromination of bromoxynil to 4-cyanophenol and DBHB to 4-hydroxybenzoate occurred. Further, bromoxynil (35 to 75 μM) and DBHB (250 to 260 μM) were used as electron acceptors for growth. Doubling times for growth (means ± standard deviations for triplicate cultures) on bromoxynil (18.4 ± 5.2 h) and DBHB (11.9 ± 1.4 h), determined by rate of [
14
C]lactate uptake into biomass, were similar to those previously reported for this microorganism during growth on pyruvate (15.4 h). In contrast, ioxynil was not deiodinated when added alone or when added with bromoxynil; however, ioxynil dehalogenation, with stoichiometric conversion to 4-cyanophenol, was observed when the culture was amended with 3-chloro-4-hydroxybenzoate (a previously reported electron acceptor). To our knowledge, this is the first direct report of deiodination by a bacterium in the
Desulfitobacterium
genus and the first report of an anaerobic pure culture with the ability to transform bromoxynil or ioxynil. This research provides valuable insights into the substrate range of
D. chlororespirans
.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献