Reconstitution of a Functional Duck Hepatitis B Virus Replication Initiation Complex from Separate Reverse Transcriptase Domains Expressed in Escherichia coli

Author:

Beck Jürgen1,Nassal Michael1

Affiliation:

1. Department of Internal Medicine II/Molecular Biology, University Hospital Freiburg, D-79106 Freiburg, Germany

Abstract

ABSTRACT Hepatitis B viruses replicate through reverse transcription of an RNA intermediate, the pregenomic RNA (pgRNA). Replication is initiated de novo and requires formation of a ribonucleoprotein complex comprising the viral reverse transcriptase (P protein), an RNA stem-loop structure (ɛ) on the pgRNA, and cellular proteins, including the heat shock protein Hsp90, the cochaperone p23, and additional, as yet unknown, factors. Functional complexes catalyze the synthesis of a short DNA primer that is templated by ɛ and covalently linked to the terminal protein (TP) domain of P protein. Currently, the only system for generating such complexes in the test tube is in vitro translation of duck hepatitis B virus (DHBV) P protein in rabbit reticulocyte lysate (RRL), which also provides the necessary factors. However, its limited translation capacity precludes a closer analysis of the complex. To overcome this restriction we sought to produce larger amounts of DHBV P protein by expression in Escherichia coli , followed by complex reconstitution in RRL. Because previous attempts to generate full-length P protein in bacteria have failed we investigated whether separate expression of the TP and reverse transcriptase-RNase H (RT-RH) domains would allow higher yields and whether these domains could trans complement each other. Indeed, TP and, after minor C-terminal modifications, also RT-RH could be expressed in substantial amounts, and when added to RRL, they were capable of ɛ-dependent DNA primer synthesis, demonstrating posttranslational activation. This reconstitution system should pave the way for a detailed understanding of the unique hepadnaviral replication initiation mechanism.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3