Disulfide bonds in folding and transport of mouse hepatitis coronavirus glycoproteins

Author:

Opstelten D J1,de Groote P1,Horzinek M C1,Vennema H1,Rottier P J1

Affiliation:

1. Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands.

Abstract

We have analyzed the effects of reducing conditions on the folding of the spike (S) protein and on the intracellular transport of the membrane (M) protein of the mouse hepatitis coronavirus. These proteins differ in their potential to form disulfide bonds in the lumen of the endoplasmic reticulum (ER). Intrachain disulfide bonds are formed in the S protein but not in M, which was demonstrated in a pulse-chase experiment by analyzing the viral proteins under nonreducing conditions. To reduce disulfide bonds in vivo, we added dithiothreitol (DTT) to the culture medium of mouse hepatitis coronavirus-infected cells following a procedure recently described by Braakman et al. (I. Braakman, J. Helenius, and A. Helenius, EMBO J. 11:1717-1722, 1992). Short exposure to DTT resulted in the complete reduction of newly synthesized S protein and affected its conformation as judged by the change in mobility in nonreducing gels and by the loss of recognition by a conformation-specific monoclonal antibody. Using this antibody in an immunofluorescence assay, we monitored the reducing effect of DTT in situ. DTT was found to initially affect only the S protein present in the ER; also, after longer treatment, the remaining signal also gradually disappeared. In contrast, folding and transport of the M protein were not inhibited by DTT. Under reducing conditions, M was transported efficiently to the trans side of the Golgi complex, indicating that cellular processes such as ER-to-Golgi transport, O-glycosylation, and Golgi retention were unaffected. In the presence of DTT, the M protein even moved at an increased rate to the Golgi complex, which is probably because of its failure to interact with unfolded S protein. The effects of in vivo reduction were reversible. When DTT was removed from pulse-labeled cells, the S protein folded posttranslationally and aberrantly; during its oxidation, most of S now transiently aggregated into large disulfide-linked complexes from which subsequently folded S molecules dissociated.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3