PCR and single-strand conformational polymorphism for recognition of medically important opportunistic fungi

Author:

Walsh T J1,Francesconi A1,Kasai M1,Chanock S J1

Affiliation:

1. Infectious Diseases Section, National Cancer Institute, Bethesda, MD 20892, USA.

Abstract

The application of PCR technology to molecular diagnostics holds great promise for the early identification of medically important pathogens. PCR has been shown to be useful for the detection of the presence of fungal DNA in both laboratory and clinical samples. Considerable interest has been focused on the utility of selecting universal primers, those that recognize constant regions among most, if not all, medically important fungi. Once an amplicon, or piece of amplified DNA determined by the unique pair of oligonucleotide primers, has been generated, several different methods may be used to distinguish between genera and between species. The two major approaches have utilized differences in restriction enzyme digestion patterns or hybridization with specific probe. We report the application of single-strand conformational polymorphism (SSCP) as a technique to delineate the differences between fungal species and/or genera. Minor sequence variations in small single-stranded DNA cause subtle changes in conformation, allowing these strands to be separated on polyacrylamide gels by SSCP. We used a 197-bp fragment amplified from the 18S rRNA gene, common to all medically important fungi. After amplification, the fragments were denatured and run on an acrylamide-glycerol gel at room temperature or 4 degrees C for 4.5 or 4 h, respectively. Under room temperature conditions, the SSCP patterns for Candida albicans, Candida tropicalis, and Candida parapsilosis were identical and all strains within each species demonstrated the same pattern. These patterns differed markedly from those of the genus Aspergillus. The SSCP patterns of major and minor bands at room temperature permitted distinction between strains of Aspergillus fumigatus and Aspergillus flavus. There also was consistency of the SSCP banding pattern among different strains of the same Aspergillus species. The SSCP patterns for other medically important opportunistic fungi, such as Cryptococcus neoformans, Pseudallescheria boydii, and Rhizopus arrhizus, were sufficiently unique to permit distinction from those of C. albicans and A. fumigatus. We conclude that the technique of PCR-SSCP provides a novel method by which to recognize and distinguish medically important opportunistic fungi and which has potential applications to molecular diagnosis, taxonomic classification, molecular epidemiology, and elucidation of mechanisms of antifungal drug resistance.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

Reference25 articles.

1. Lysis-centrifugation blood cultures in the detection of tissue-proven invasive candidiasis: disseminated versus single organ infection;Berenguer J.;Diagn. Microbiol. Infect. Dis.,1993

2. Detection of surgical pathogens by in vitro DNA amplification. Part I. Rapid identification of Candida albicans by in vitro amplification of a fungus specific gene;Buchman T. G.;Surgery,1990

3. Non-isotopic detection of single strand conformation polymorphism (PCR-SSCP): a rapid and sensitive technique in diagnosis of phenylketonuria;Dockhorn-Dworniczak B.;Nucleic Acids Res.,1991

4. Recent advance in the polymerase chain reaction;Erlich H. A.;Science,1991

5. Microtitration plate enzyme immunoassay to detect PCR-amplified DNA from Candida species in blood;Fujita S.;J. Clin. Microbiol.,1995

Cited by 125 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3