Cephalosporin MIC Distribution of Extended-Spectrum-β-Lactamase- and pAmpC-Producing Escherichia coli and Klebsiella Species

Author:

Kohner Peggy C.1,Robberts Frans J. L.1,Cockerill Franklin R.1,Patel Robin12

Affiliation:

1. Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology

2. Division of Infectious Diseases, Department of Medicine, Mayo Clinic Rochester, Rochester, Minnesota

Abstract

ABSTRACT The acquisition of β-lactamases in members of the Enterobacteriaceae family poses a challenge to antimicrobial susceptibility testing in the clinical laboratory. We correlated the distribution of the MICs for Klebsiella spp. and Escherichia coli with the presence of extended-spectrum β-lactamase (ESBL) and plasmid-mediated AmpC β-lactamase (pAmpC) genes. A total of 264 isolates were subjected to cefazolin, ceftriaxone, cefotaxime, ceftazidime, cefepime, and aztreonam agar dilution MIC determination; ESBL screening and confirmatory testing by the methods of the Clinical and Laboratory Standards Institute (CLSI); and for isolates for which the MICs of extended-spectrum cephalosporins were ≥1 μg/ml or the MICs of cefpodoxime were >4 μg/ml, PCR amplification and sequencing of the ESBL and pAmpC genes. PCR was positive for 73/81 isolates (45 isolates with an ESBL gene alone, 24 isolates with a pAmpC gene alone, with 4 isolates with both genes). Compared to PCR, confirmatory testing by the CLSI method yielded a sensitivity and a specificity of 98.0 and 96.3%, respectively; there were six false-positive results and one false-negative result. No distinction in the MIC distribution was apparent between isolates with the ESBL gene and isolates with the pAmpC gene. A substantial percentage of the isolates with PCR-confirmed ESBL and/or pAmpC genes fell within the current CLSI susceptible category. For a ceftazidime, ceftriaxone, or cefotaxime MIC of ≥2 μg/ml, a dichotomy existed between isolates with and without ESBL and pAmpC genes in most cases. This suggests that the presence of the ESBL and the pAmpC enzymes may yield similar MICs of extended-spectrum cephalosporins, many of which fall within the current nonresistant categories. Lowering of the current CLSI breakpoints for cephalosporins appears to be warranted.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3