Lactic Acid Downregulates Viral MicroRNA To Promote Epstein-Barr Virus-Immortalized B Lymphoblastic Cell Adhesion and Growth

Author:

Mo Xiaohui12,Wei Fang3,Tong Yin4,Ding Ling1,Zhu Qing1,Du Shujuan1,Tan Fei2,Zhu Caixia1,Wang Yuyan1,Yu Qian2,Liu Yeqiang5,Robertson Erle S.6,Yuan Zhenghong1,Cai Qiliang1

Affiliation:

1. MOE& MOH Key Laboratory of Medical Molecular Virology, School of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China

2. Central Laboratory, Shanghai Dermatology Hospital, Shanghai, People's Republic of China

3. ShengYushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China

4. Division of Hematology, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China

5. Division of Pathology, Shanghai Dermatology Hospital, Shanghai, People's Republic of China

6. Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America

Abstract

ABSTRACT High plasma lactate is associated with poor prognosis of many malignancies, but its role in virally mediated cancer progression and underlying molecular mechanisms are unclear. Epstein-Barr virus (EBV), the first human oncogenic virus, causes several cancers, including B-cell lymphoma. Here, we report that lactate dehydrogenase A (LDH-A) expression and lactate production are elevated in EBV-immortalized B lymphoblastic cells, and lactic acid (LA; acidic lactate) at low concentration triggers EBV-infected B-cell adhesion, morphological changes, and proliferation in vitro and in vivo . Moreover, LA-induced responses of EBV-infected B cells uniquely occurs in viral latency type III, and it is dramatically associated with the inhibition of global viral microRNAs, particularly the miR-BHRF1 cluster, and the high expression of SMAD3 , JUN , and COL1A genes. The introduction of miR-BHRF1-1 blocks the LA-induced effects of EBV-infected B cells. Thus, this may be a novel mechanism to explain EBV-immortalized B lymphoblastic cell malignancy in an LA microenvironment. IMPORTANCE The tumor microenvironment is complicated, and lactate, which is created by cell metabolism, contributes to an acidic microenvironment that facilitates cancer progression. However, how LA operates in virus-associated cancers is unclear. Thus, we studied how EBV (the first tumor virus identified in humans; it is associated with many cancers) upregulates the expression of LDH-A and lactate production in B lymphoma cells. Elevated LA induces adhesion and the growth of EBV-infected B cells by inhibiting viral microRNA transcription. Thus, we offer a novel understanding of how EBV utilizes an acidic microenvironment to promote cancer development.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3