Expression and self-assembly of empty virus-like particles of hepatitis E virus

Author:

Li T C1,Yamakawa Y1,Suzuki K1,Tatsumi M1,Razak M A1,Uchida T1,Takeda N1,Miyamura T1

Affiliation:

1. Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.

Abstract

Hepatitis E virus (HEV) is a pathogenic agent that causes fecally-orally transmitted acute hepatitis. The genome, a single-stranded positive-sense RNA, encodes three forward open reading frames (ORFs), in which an approximately 2-kb structural protein is located in the 3' end. To produce HEV-like particles the structural protein, with its N terminus truncated (amino acid residues 112 to 660 of ORF2), was expressed in insect Tn5 cells by a recombinant baculovirus. In addition to the primary translation product with a molecular mass of 58 kDa, a large amount of a further-processed molecule with a molecular mass of 50 kDa was generated and efficiently released into the culture medium. Electron microscopic observation of the culture medium revealed that the 50-kDa protein self-assembled to form empty virus-like particles (VLPs). The buoyant density of the VLPs in CsCl was 1.285 g/cm3 and their diameter was 23.7 nm, a little smaller than the 27 nm of native HEV particles secreted into the bile or stools of experimentally infected monkeys. The yield of the VLPs was 1 mg per 10(7) cells as a purified form. The particles possess antigenicity similar to that of authentic HEV particles and, consequently, they appear to be a good antigen for the sensitive detection of HEV-specific immunoglobulin G (IgG) and IgM antibodies. Furthermore, the VLP may be the most promising candidate yet for an HEV vaccine, owing to its potent immunogenicity.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 273 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3