Transduction by adeno-associated virus vectors in the rabbit airway: efficiency, persistence, and readministration

Author:

Halbert C L1,Standaert T A1,Aitken M L1,Alexander I E1,Russell D W1,Miller A D1

Affiliation:

1. Fred Hutchinson Cancer Research Centre, Seattle, Washington 98109, USA.

Abstract

The ability of recombinant adeno-associated virus (AAV) vectors to integrate into the host genome and to transduce nondividing cells makes them attractive as vehicles for gene delivery. In this study, we assessed the ability of several AAV vectors to transduce airway cells in rabbits by measuring marker gene expression. AAV vectors that transferred either a beta-galactosidase (beta-gal) or a human placental alkaline phosphatase (AP) gene were delivered to one lobe of the rabbit lung by use of a balloon catheter placed under fluoroscopic guidance. We observed vector-encoded beta-gal or AP staining almost exclusively in the epithelial and smooth muscle cells in the bronchus at the region of balloon placement. The overall efficiency of transduction in the balloon-treated bronchial epithelium was low but reached 20% in some areas. The majority of the staining was in ciliated cells but was also observed in basal cells and airway smooth muscle cells. We observed an 80-fold decrease in marker-positive epithelial cells during the 60-day period after vector infusion, whereas the number of marker-positive smooth muscle cells stayed constant. Although treatment with the topoisomerase inhibitor etoposide dramatically enhanced AAV transduction in primary airway epithelial cells in culture, treatment of rabbits did not improve transduction rates in the airway. Vector readministration failed to produce additional transduction events, which correlated with the appearance of neutralizing antibodies. These results indicate that both readministration and immune modulation will be required in the use of AAV vectors for gene therapy to the airway epithelium.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 180 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3