Effects of Activated Macrophages on Nocardia asteroides

Author:

Filice Gregory A.12,Beaman Blaine L.3,Remington Jack S.12

Affiliation:

1. Division of Infectious Diseases, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305

2. Division of Allergy, Immunology and Infectious Diseases, Palo Alto Medical Research Foundation, Palo Alto, California 94301

3. Department of Medical Microbiology, University of California School of Medicine, Davis, California 95616

Abstract

The mechanism(s) of host resistance against Nocardia asteroides has not been well defined. Since disease due to N. asteroides frequently occurs in patients with impaired cell-mediated immunity, we studied the interaction of N. asteroides with activated and control mouse peritoneal macrophages. Activated macrophages were from mice infected with Toxoplasma gondii or injected with Corynebacterium parvum. N. asteroides in the early stationary phase (>99% in the coccobacillary form) was used for challenge of macrophage monolayers. Growth of two strains of N. asteroides was markedly inhibited in activated macrophages, whereas N. asteroides grew well in control macrophages. Quantitation of macrophage-associated N. asteroides indicated that activated macrophages killed 40 to 50% of N. asteroides within 6 h ( P < 0.002). In control macrophage preparations, it appeared as if Nocardia filaments extended from within macrophages to the outside, and many of these filaments appeared to have extended to and then grown through neighboring macrophages. In activated macrophage preparations, Nocardia remained in the coccobacillary form in most macrophages. Control macrophage monolayers were almost completely overgrown with and destroyed by Nocardia 20 h after challenge, whereas activated macrophage monolayers remained intact. Nocardia that grew in control macrophages were not acid-alcohol fast or only weakly so, whereas the few Nocardia that grew in activated macrophages were strongly acid-alcohol fast. Our results indicate that activated macrophages may be important in host defense against N. asteroides.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3