Identification and expression of rpo19, a vaccinia virus gene encoding a 19-kilodalton DNA-dependent RNA polymerase subunit

Author:

Ahn B Y1,Rosel J1,Cole N B1,Moss B1

Affiliation:

1. Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892.

Abstract

The vaccinia virus DNA-dependent RNA polymerase subunit gene rpo19 was identified, and its expression was examined at RNA and protein levels. Antibody to the multisubunit RNA polymerase purified from virions reacted with a polypeptide with an apparent Mr of 21,000 that was synthesized in reticulocyte lysates programmed with (i) mRNA from infected cells that was isolated by hybridization to DNA subclones of the viral genomic HindIII A fragment and (ii) mRNA made in vitro by transcription of the viral open reading frame A6R. Polyclonal antiserum, raised to a recombinant protein product of the A6R open reading frame which could encode an 18,996-Da protein with an acidic N terminus, reacted with Mr-21,000 and -22,000 polypeptides that cosedimented with purified RNA polymerase. Internal sequencing of the two polypeptides confirmed that both were encoded by A6R, and the gene was named rpo19 to indicate the predicted molecular mass of the polypeptide in kilodaltons. Immunoblotting and metabolic labeling of infected cell proteins indicated that synthesis of the Mr-21,000 polypeptide started early and continued throughout virus infection, whereas the Mr-22,000 form appeared late following DNA replication. RNA analyses suggested that the rpo19 mRNA was expressed from a dual early/late promoter and that the protein-coding region of the mRNA was directly preceded by a short 5' poly(A) leader, apparently initiated within the TAAATG motif at the beginning of the open reading frame.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3