Author:
Liu J,Lee F,Lin C,Yao X,Davenport J W,Wong T
Abstract
The N(inf2)-fixing bacterium Azotobacter vinelandii was grown in an O(inf2)-regulated chemostat with glucose or galactose as substrate. Increasing the O(inf2) partial pressure resulted in identical synthesis of the noncoupled cytochrome d terminal oxidase, which is consistent with the hypothesis that A. vinelandii uses high rates of respiration to protect the nitrogenase from oxygen. However, cell growth on glucose showed a lower yield of biomass, higher glycolytic rate, higher respiratory rate, and lower cytochrome o content than cell growth on galactose. Elemental analysis indicated no appreciable change in the C-to-N ratio of cell cultures, suggesting that the major composition of the cell was not influenced by the carbon source. A poor coordination of glucose and nitrogen metabolisms in A. vinelandii was suggested. The rapid hydrolysis of glucose resulted in carbonaceous accumulation in cells. Thus, Azotobacter species must induce a futile electron transport to protect cells from the high rates of glucose uptake and glycolysis.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献