Metabolic interactions affect the biomass of synthetic bacterial biofilm communities

Author:

Sun Xinli12ORCID,Xie Jiyu12ORCID,Zheng Daoyue1,Xia Riyan1,Wang Wei1,Xun Weibing1,Huang Qiwei1,Zhang Ruifu1,Kovács Ákos T.23ORCID,Xu Zhihui1ORCID,Shen Qirong1

Affiliation:

1. Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Nanjing Agricultural University, Nanjing, Jiangsu, China

2. Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark

3. Institute of Biology Leiden, Leiden University, Leiden, the Netherlands

Abstract

ABSTRACT Microbes typically reside in communities containing multiple species, whose interactions have considerable impacts on the robustness and functionality of such communities. To manage microbial communities, it is essential to understand the factors driving their assemblage and maintenance. Even though the community composition could be easily assessed, interspecies interactions during community establishment remain poorly understood. Here, we combined co-occurrence network analysis with quantitative PCR to examine the importance of each species within synthetic communities (SynComs) of pellicle biofilms. Genome-scale metabolic models and in vitro experiments indicated that the biomass of SynComs was primarily affected by keystone species that are acting either as metabolic facilitators or as competitors. Our study sets an example of how to construct a SynCom and investigate interspecies interactions. IMPORTANCE Co-occurrence network analysis is an effective tool for predicting complex networks of microbial interactions in the natural environment. Using isolates from a rhizosphere, we constructed multi-species biofilm communities and investigated co-occurrence patterns between microbial species in genome-scale metabolic models and in vitro experiments. According to our results, metabolic exchanges and resource competition may partially explain the co-occurrence network analysis results found in synthetic bacterial biofilm communities.

Funder

MOST | National Natural Science Foundation of China

MOST | National Key Research and Development Program of China

Danish National Research Foundation

Novo Nordisk Foundation via the INTERACT project

Publisher

American Society for Microbiology

Subject

Computer Science Applications,Genetics,Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Biochemistry,Physiology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3