Learning metabolic dynamics from irregular observations by Bidirectional Time-Series State Transfer Network

Author:

Xu Shaohua12,Xu Ting1,Yang Yuping1,Chen Xin12ORCID

Affiliation:

1. School of Basic Medical Sciences and the First Affiliated Hospital Department of Radiation Oncology, Zhejiang University School of Medicine, Hangzhou, China

2. Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China

Abstract

ABSTRACT Modeling microbial metabolic dynamics is important for the rational optimization of both biosynthetic systems and industrial processes to facilitate green and efficient biomanufacturing. Classical approaches utilize explicit equation systems to represent metabolic networks, enabling the quantification of pathway fluxes to identify metabolic bottlenecks. However, these white-box models, despite their diverse applications, have limitations in simulating metabolic dynamics and are intrinsically inaccurate for industrial strains that lack information on network structures and kinetic parameters. On the other hand, black-box models do not rely on prior mechanistic knowledge of strains but are built upon observed time-series trajectories of biosynthetic systems in action. In practice, these observations are typically irregular, with discontinuously observed time points across multiple independent batches, each time point potentially containing missing measurements. Learning from such irregular data remains challenging for existing approaches. To address this issue, we present the Bidirectional Time-Series State Transfer Network (BTSTN) for modeling metabolic dynamics directly from irregular observations. Using evaluation data sets derived from both ideal dynamic systems and a real-world fermentation process, we demonstrate that BTSTN accurately reconstructs dynamic behaviors and predicts future trajectories. This approach exhibits enhanced robustness against missing measurements and noise, as compared to the state-of-the-art methods. IMPORTANCE Industrial biosynthetic systems often involve strains with unclear genetic backgrounds, posing challenges in modeling their distinct metabolic dynamics. In such scenarios, white-box models, which commonly rely on inferred networks, are thereby of limited applicability and accuracy. In contrast, black-box models, such as statistical models and neural networks, are directly fitted or learned from observed time-series trajectories of biosynthetic systems in action. These methods typically assume regular observations without missing time points or measurements. If the observations are irregular, a pre-processing step becomes necessary to obtain a fully filled data set for subsequent model training, which, at the same time, inevitably introduces errors into the resulting models. BTSTN is a novel approach that natively learns from irregular observations. This distinctive feature makes it a unique addition to the current arsenal of technologies modeling metabolic dynamics.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Medical and Health Science and Technology Plan of Zhejiang Province

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3