Proteome efficiency of metabolic pathways in Escherichia coli increases along the nutrient flow

Author:

Hu Xiao-Pan12ORCID,Schroeder Stefan12,Lercher Martin J.12ORCID

Affiliation:

1. Institute for Computer Science, Heinrich Heine University , Düsseldorf, Germany

2. Department of Biology, Heinrich Heine University , Düsseldorf, Germany

Abstract

ABSTRACT Understanding the allocation of the cellular proteome to different cellular processes is central to unraveling the organizing principles of bacterial physiology. Proteome allocation to protein translation itself is maximally efficient, i.e., it represents the minimal allocation of dry mass able to sustain the observed protein production rate. In contrast, recent studies on bacteria have demonstrated that the concentrations of many proteins exceed the minimal level required to support the observed growth rate, indicating some heterogeneity across pathways in their proteome efficiency. Here, we systematically analyze the proteome efficiency of metabolic pathways, which together account for more than half of the Escherichia coli proteome during exponential growth. Comparing the predicted minimal and the observed proteome allocation to different metabolic pathways across growth conditions, we find that the protein abundance in the most costly biosynthesis pathways—those for amino acid biosynthesis and cofactor biosynthesis—is regulated for near-optimal efficiency. Overall, proteome efficiency increases along the carbon flow through the metabolic network; proteins involved in pathways of nutrient uptake and central metabolism tend to be highly over-abundant, while proteins involved in anabolic pathways and in protein translation are much closer to the expected minimal abundance across conditions. Our work thus provides a bird’s-eye view of metabolic pathway efficiency, demonstrating systematic deviations from optimal cellular efficiency at the network level. IMPORTANCE Protein translation is the most expensive cellular process in fast-growing bacteria, and efficient proteome usage should thus be under strong natural selection. However, recent studies show that a considerable part of the proteome is unneeded for instantaneous cell growth in Escherichia coli . We still lack a systematic understanding of how this excess proteome is distributed across different pathways as a function of the growth conditions. We estimated the minimal required proteome across growth conditions in E. coli and compared the predictions with experimental data. We found that the proteome allocated to the most expensive internal pathways, including translation and the synthesis of amino acids and cofactors, is near the minimally required levels. In contrast, transporters and central carbon metabolism show much higher proteome levels than the predicted minimal abundance. Our analyses show that the proteome fraction unneeded for instantaneous cell growth decreases along the nutrient flow in E. coli .

Funder

Volkswagen Foundation

Deutsche Forschungsgemeinschaft

Publisher

American Society for Microbiology

Subject

Computer Science Applications,Genetics,Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Biochemistry,Physiology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3