Gut ecological networks reveal associations between bacteria, exercise, and clinical profile in non-alcoholic fatty liver disease patients

Author:

Csader Susanne1ORCID,Chen Xiuqiang2ORCID,Leung Howell2ORCID,Männistö Ville3,Pentikäinen Heikki4,Tauriainen Milla-Maria13,Savonen Kai45,El-Nezami Hani16,Schwab Ursula17,Panagiotou Gianni289

Affiliation:

1. Department of Public Health and Clinical Nutrition, University of Eastern Finland , Kuopio, Finland

2. Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute , Jena, Germany

3. Departments of Medicine, University of Eastern Finland and Kuopio University Hospital , Kuopio, Finland

4. Kuopio Research Institute of Exercise Medicine , Kuopio, Finland

5. Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital , Kuopio, Finland

6. University of Hong Kong School of Biological Sciences, The University of Hong Kong , Hong Kong, China

7. Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital , Kuopio, Finland

8. Faculty of Biological Sciences, Friedrich Schiller University , Jena, Germany

9. Department of Medicine, The University of Hong Kong , Hong Kong SAR, China

Abstract

ABSTRACT Gut microbial dysbiosis has been observed in non-alcoholic fatty liver disease (NAFLD). The beneficial impact of exercise, the recommended lifestyle change for NAFLD patients, might be mediated by the gut microbiome (GM). However, the exact taxonomic and functional signatures associated with the host’s clinical and biochemical improvement during exercise in NAFLD patients have not been elucidated yet. To investigate the impact of exercise on GM and reveal GM structures associated with NAFLD improvement during exercise. Stool samples from a 12-week randomized controlled exercise study on NAFLD subjects ( N = 39) were retrieved, and shotgun metagenomics was performed at baseline and endpoint. Differential correlation network and enrichment analysis were applied to characterize the GM taxonomic and functional changes during the exercise intervention and to associate GM changes with biomarkers of liver status and metabolic dysregulation. Network analysis demonstrated that exercise induced significant changes in the bacterial interactome, which were associated with waist circumference; resting metabolic rate; plasma fasting concentrations of triglyceride, glucose, insulin, and glycated hemoglobin A1c; and homeostasis model assessment for insulin resistance. Grouping the patients in the exercise group ( N = 20) as responders ( N = 13) and non-responders ( N = 7) using their intrahepatic lipid content (IHL) change allowed us to identify bacteria consortia contributing to the levels of alanine fermentation, methanol-, creatinine-, and protocatechuate degradation and as a result to the plasma concentrations of liver injury markers alanine transaminase, gamma-glutamyl transaminase, and aspartate transaminase. We showed that even though exercise has not a significant impact on the alpha- and beta-diversity of NAFLD patients, it leads to a significant re-structuring of the gut bacteria interactome and that specific structural changes can be linked with improvements in IHL. IMPORTANCE Our study is applying a community-based approach to examine the influence of exercise on gut microbiota (GM) and discover GM structures linked with NAFLD improvements during exercise. The majority of microbiome research has focused on finding specific species that may contribute to the development of human diseases. However, we believe that complex diseases, such as NAFLD, would be more efficiently treated using consortia of species, given that bacterial functionality is based not only on its own genetic information but also on the interaction with other microorganisms. Our results revealed that exercise significantly changes the GM interaction and that structural alterations can be linked with improvements in intrahepatic lipid content and metabolic functions. We believe that the identification of these characteristics in the GM enhances the development of exercise treatment for NAFLD and will attract general interest in this field.

Funder

EC | Horizon Europe | Excellent Science | HORIZON EUROPE Marie Sklodowska-Curie Actions

Deutsche Forschungsgemeinschaft

Publisher

American Society for Microbiology

Subject

Computer Science Applications,Genetics,Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Biochemistry,Physiology,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3