Is ICE hot? A genomic comparative study reveals integrative and conjugative elements as “hot” vectors for the dissemination of antibiotic resistance genes

Author:

Zheng Qi1ORCID,Li Liguan1,Yin Xiaole1,Che You1,Zhang Tong1

Affiliation:

1. Department of Civil Engineering, Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research,The University of Hong Kong, Hong Kong, China

Abstract

ABSTRACT The dissemination of antibiotic resistance genes (ARGs) driven by mobile genetic elements (MGEs), especially among pathogenic bacteria, is of increasing global concern. Different from other well-characterized MGEs, integrative and conjugative elements (ICEs) have been lacking a comprehensive understanding of their roles in ARG propagation across bacterial phylogenies. Through genomic study based on a large collection of bacterial complete genomes and further comparative analysis with two prominent MGEs to spread ARGs—conjugative plasmids and class 1 integrons, we, for the first time, demonstrated that ICEs are indeed overlooked “hot” vectors from the aspects of mobility and pathogenicity: (i) ICEs exhibited broader phylogenetic distribution among two dominant phyla with high ARG diversity and (ii) ARG-carrying ICEs were significantly enriched in potential human pathogens covering all the six “ESKAPE” species, of which some displayed typical co-occurrence patterns with ARGs and virulence factors. Moreover, this first genomic comparative study also deciphered the distinct ARG profiles harbored by these three essential MGE groups in terms of diversity and prevalence, with characteristic ARG preference to each MGE group. Overall, our findings concerning the MGE-specific performance for ARG transmission, in particular, the historically understudied ICEs, could shed light on control strategy optimization to antibiotic resistance crises. IMPORTANCE Different from other extensively studied mobile genetic elements (MGEs) whose discoveries were initiated decades ago (1950s–1980s), integrative and conjugative elements (ICEs), a diverse array of more recently identified elements that were formally termed in 2002, have aroused increasing concern for their crucial contribution to the dissemination of antibiotic resistance genes (ARGs). However, the comprehensive understanding on ICEs’ ARG profile across the bacterial tree of life is still blurred. Through a genomic study by comparison with two key MGEs, we, for the first time, systematically investigated the ARG profile as well as the host range of ICEs and also explored the MGE-specific potential to facilitate ARG propagation across phylogenetic barriers. These findings could serve as a theoretical foundation for risk assessment of ARGs mediated by distinct MGEs and further to optimize therapeutic strategies aimed at restraining antibiotic resistance crises.

Funder

Research Grants Council, University Grants Committee

Publisher

American Society for Microbiology

Subject

Computer Science Applications,Genetics,Molecular Biology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics,Biochemistry,Physiology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3