GP5+/6+ PCR followed by Reverse Line Blot Analysis Enables Rapid and High-Throughput Identification of Human Papillomavirus Genotypes

Author:

van den Brule Adriaan J. C.1,Pol René1,Fransen-Daalmeijer Nathalie1,Schouls Leo M.2,Meijer Chris J. L. M.1,Snijders Peter J. F.1

Affiliation:

1. Department of Pathology, Vrije Universiteit Medical Center, Amsterdam

2. Department of Bacteriology, National Institute of Public Health and the Environment, Bilthoven, The Netherlands

Abstract

ABSTRACT In this study, we developed a simple and fast typing procedure for 37 mucosotropic human papillomavirus (HPV) types using a nonradioactive reverse line blotting (RLB) procedure for general primer (GP5+/6+) PCR products. This system has the advantages not only that in a simple format, up to 42 PCR products can be simultaneously typed per membrane per day, but also that after stripping, the membranes can be easily rehybridized at least 15 times without a loss of signal. RLB appeared highly specific, and its sensitivity was identical to that of conventional typing performed with type-specific oligonucleotide probes in an enzyme immunoassay (EIA). The performance of RLB typing was evaluated with samples of HPV-positive cervical scrapings ( n = 196) and biopsies of cervical premalignant lesions ( n = 100). The distribution of HPV genotypes detected in these samples was in line with the distribution expected on the basis of literature data. In addition, RLB and EIA typing procedures were compared for the typing of high-risk HPV types in GP5+/6+ PCR products of 210 cervical scrapings from high-risk HPV-positive women who participated in a population-based screening program. The typing procedures had an excellent overall agreement rate of 96.5% (kappa value, 0.77). RLB was successful in detecting multiple HPV infections as well as single infections. In conclusion, the GP5+/6+ PCR-RLB procedure appeared to be a reliable and simple approach that may be of great value for large epidemiological studies, population-based cervical cancer screening programs, and vaccination trials that require high-throughput HPV typing.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3