Porcine Reproductive and Respiratory Syndrome Virus nsp1α Inhibits NF-κB Activation by Targeting the Linear Ubiquitin Chain Assembly Complex

Author:

Jing Huiyuan12,Fang Liurong12,Ding Zhen12,Wang Dang12,Hao Wenqi12,Gao Li12,Ke Wenting12,Chen Huanchun12,Xiao Shaobo12

Affiliation:

1. State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China

2. The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China

Abstract

ABSTRACT Linear ubiquitination, a newly discovered posttranslational modification, is catalyzed by the linear ubiquitin chain assembly complex (LUBAC), which is composed of three subunits: one catalytic subunit HOIP and two accessory molecules, HOIL-1L and SHARPIN. Accumulating evidence suggests that linear ubiquitination plays a crucial role in innate immune signaling and especially in the activation of the NF-κB pathway by conjugating linear polyubiquitin chains to NF-κB essential modulator (NEMO, also called IKKγ), the regulatory subunit of the IKK complex. Porcine reproductive and respiratory syndrome virus (PRRSV), an Arterivirus that has devastated the swine industry worldwide, is an ideal model to study the host's disordered inflammatory responses after viral infection. Here, we found that LUBAC-induced NF-κB and proinflammatory cytokine expression can be inhibited in the early phase of PRRSV infection. Screening the PRRSV-encoded proteins showed that nonstructural protein 1α (nsp1α) suppresses LUBAC-mediated NF-κB activation and its CTE domain is required for the inhibition. Mechanistically, nsp1α binds to HOIP/HOIL-1L and impairs the interaction between HOIP and SHARPIN, thus reducing the LUBAC-dependent linear ubiquitination of NEMO. Moreover, PRRSV infection also blocks LUBAC complex formation and NEMO linear-ubiquitination, the important step for transducing NF-κB signaling. This unexpected finding demonstrates a previously unrecognized role of PRRSV nsp1α in modulating LUBAC signaling and explains an additional mechanism of immune modulation by PRRSV. IMPORTANCE Porcine reproductive and respiratory syndrome (PRRS) is one of the most important veterinary infectious diseases in countries with intensive swine industries. PRRS virus (PRRSV) infection usually suppresses proinflammatory cytokine expression in the early stage of infection, whereas it induces an inflammatory storm in the late stage. However, precisely how the virus is capable of doing so remains obscure. In this study, we found that by blocking the interaction of its catalytic subunit HOIP and accessory molecule SHARPIN, PRRSV can suppress NF-κB signal transduction in the early stage of infection. Our findings not only reveal a novel mechanism evolved by PRRSV to regulate inflammatory responses but also highlight the important role of linear ubiquitination modification during virus infection.

Funder

The National Basic Research Program (973) of China

The National Natural Sciences Foundation of China

National Natural Sciences Foundation of China

Research Fund for the Doctoral Program of Higher Education of China

Natural Science Foundation of Hubei Province

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3