Structural Characterization of the Essential Cell Division Protein FtsE and Its Interaction with FtsX in Streptococcus pneumoniae

Author:

Alcorlo Martin1,Straume Daniel2,Lutkenhaus Joe3,Håvarstein Leiv Sigve2,Hermoso Juan A.1ORCID

Affiliation:

1. Department of Crystallography and Structural Biology, Institute of Physical-Chemistry “Rocasolano”, Spanish National Research Council (CSIC), Madrid, Spain

2. Department of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, Ås, Norway

3. Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA

Abstract

Bacterial cell division is a central process that requires exquisite orchestration of both the cell wall biosynthetic and lytic machineries. The essential membrane complex FtsEX, widely conserved across bacteria, plays a central role by recruiting proteins to the divisome apparatus and by regulating periplasmic muralytic activity from the cytosol. FtsEX is a member of the type VII family of the ABC-superfamily, but instead of being a transporter, it couples the ATP hydrolysis catalyzed by FtsE to mechanically transduce a conformational signal that provokes the activation of peptidoglycan (PG) hydrolases. So far, no structural information is available for FtsE. Here, we provide the structural characterization of FtsE, confirming its ATPase nature and revealing regions with high structural plasticity which are key for FtsE binding to FtsX. The complementary binding region in FtsX has also been identified and validated in vivo . Our results provide evidence on how the difference between the ATP/ADP-bound states in FtsE would dramatically alter the interaction of FtsEX with the PG hydrolase PcsB in pneumococcal division.

Funder

Spanish Ministry of Science, Innovation and Universities

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3