Dissemination and Systemic Colonization of Uropathogenic Escherichia coli in a Murine Model of Bacteremia

Author:

Smith Sara N.1,Hagan Erin C.1,Lane M. Chelsea2,Mobley Harry L. T.1

Affiliation:

1. Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA

2. Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA

Abstract

ABSTRACT Infection with uropathogenic Escherichia coli (UPEC), the causative agent of most uncomplicated urinary tract infections, proceeds in an ascending manner and, if left untreated, may result in bacteremia and urosepsis. To examine the fate of UPEC after its entry into the bloodstream, we developed a murine model of sublethal bacteremia. CBA/J mice were inoculated intravenously with 1 × 10 6  CFU of pyelonephritis strain E. coli CFT073 carrying a bioluminescent reporter. Biophotonic imaging, used to monitor the infection over 48 h, demonstrated that the bacteria disseminated systemically and appeared to localize at discrete sites. UPEC was recovered from the spleen, liver, kidneys, lungs, heart, brain, and intestines as early as 20 min postinoculation, peaking at 24 h postinoculation. A nonpathogenic E. coli K-12 strain, however, disseminated at significantly lower levels ( P < 0.01) and was cleared from the liver and cecum by 24 h postinoculation. Isogenic mutants lacking type 1 fimbriae, P fimbriae, capsule, TonB, the heme receptors Hma and ChuA, or particularly the sialic acid catabolism enzyme NanA were significantly outcompeted by wild-type CFT073 during bacteremia ( P < 0.05), while flagellin and hemolysin mutants were not. IMPORTANCE E. coli is the primary cause of urinary tract infections. In severe cases of kidney infection, bacteria can enter the bloodstream and cause systemic disease. While the ability of E. coli to cause urinary tract infection has been extensively studied, the fate of these bacteria once they enter the bloodstream is largely unknown. Here we used an imaging technique to develop a mouse model of E. coli bloodstream infection and identify bacterial genes that are important for the bacteria to spread to and infect various organs. Understanding how urinary tract pathogens like E. coli cause disease after they enter the bloodstream may aid in the development of protective and therapeutic treatments.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3