Distribution of malaria parasite-derived phosphatidylcholine in the infected erythrocyte

Author:

Vallintine Tansy1,van Ooij Christiaan1ORCID

Affiliation:

1. Department of Infection Biology, Faculty of Infectious Disease, London School of Hygiene & Tropical Medicine , London, United Kingdom

Abstract

ABSTRACT Malaria parasites modify their host erythrocyte in multiple ways, leading to changes in the deformability, adhesiveness, and permeability of the host erythrocyte. Most of these changes are mediated by proteins exported from the parasite to the host erythrocyte, where these proteins interact with the host cell cytoskeleton or form complexes in the plasma membrane of the infected erythrocyte. In addition, malaria parasites induce the formation of membranous compartments—the parasitophorous vacuole, the tubovesicular network (TVN), the Maurer’s clefts and small vesicles—within the infected erythrocyte, a cell that is normally devoid of internal membranes. After infection, changes also occur in the composition and asymmetry of the erythrocyte plasma membrane. Although many aspects of the mechanism of export of parasite proteins have become clear, the mechanism by which these membranous compartments are formed and expanded is almost entirely unknown. To determine whether parasite-derived phospholipids play a part in these processes, we applied a metabolic labeling technique that allows phosphatidylcholine to be labeled with a fluorophore. As the host erythrocyte cannot synthesize phospholipids, within infected erythrocytes, only parasite-derived phosphatidylcholine will be labeled with this technique. The results revealed that phosphatidylcholine produced by the parasite is distributed throughout the infected erythrocyte, including the TVN and the erythrocyte plasma membrane, but not Maurer’s clefts. Interestingly, labeled phospholipids were also detected in the erythrocyte plasma membrane very soon after invasion of the parasites, indicating that the parasite may add phospholipids to the host erythrocyte during invasion. IMPORTANCE Here, we describe a previously unappreciated way in which the malaria parasite interacts with the host erythrocyte, namely, by the transfer of parasite phospholipids to the erythrocyte plasma membrane. This likely has important consequences for the survival of the parasite in the host cell and the host organism. We show that parasite-derived phospholipids are transferred from the parasite to the host erythrocyte plasma membrane and that other internal membranes that are produced after the parasite has invaded the cell are produced, at least in part, using parasite-derived phospholipids. The one exception to this is the Maurer’s cleft, a membranous organelle that is involved in the transport of parasite proteins to the surface of the erythrocyte. This reveals that the Maurer’s cleft is produced in a different manner than the other parasite-induced membranes. Overall, these findings provide a platform for the study of a new aspect of the host-parasite interaction.

Funder

UKRI | Medical Research Council

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3