Temporal gene expression during asexual development of the apicomplexan Sarcocystis neurona

Author:

Dangoudoubiyam Sriveny1ORCID,Norris Jamie K.1,Namasivayam Sivaranjani23,de Paula Baptista Rodrigo24,Cannes do Nascimento Naila5,Camp Joseph5,Schardl Christopher L.6,Kissinger Jessica C.234,Howe Daniel K.1

Affiliation:

1. Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA

2. Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA

3. Department of Genetics, University of Georgia, Athens, Georgia, USA

4. Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA

5. Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA

6. Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA

Abstract

ABSTRACT Asexual replication in the apicomplexan Sarcocystis neurona involves two main developmental stages: the motile extracellular merozoite and the sessile intracellular schizont. Merozoites invade host cells and transform into schizonts that undergo replication via endopolygeny to form multiple (64) daughter merozoites that are invasive to new host cells. Given that the capabilities of the merozoite vary significantly from the schizont, the patterns of transcript levels throughout the asexual lifecycle were determined and compared in this study. RNA-Seq data were generated from extracellular merozoites and four intracellular schizont development time points. Of the 6,938 genes annotated in the S. neurona genome, 6,784 were identified in the transcriptome. Of these, 4,111 genes exhibited significant differential expression between the merozoite and at least one schizont development time point. Transcript levels were significantly higher for 2,338 genes in the merozoite and 1,773 genes in the schizont stages. Included in this list were genes encoding the secretory pathogenesis determinants (SPDs), which encompass the surface antigen and SAG-related sequence (SAG/SRS) and the secretory organelle proteins of the invasive zoite stage (micronemes, rhoptries, and dense granules). As anticipated, many of the S. neurona SPD gene transcripts were abundant in merozoites. However, several SPD transcripts were elevated in intracellular schizonts, suggesting roles unrelated to host cell invasion and the initial establishment of the intracellular niche. The hypothetical genes that are potentially unique to the genus Sarcocystis are of particular interest. Their conserved expression patterns are instructive for future investigations into the possible functions of these putative Sarcocystis -unique genes. IMPORTANCE The genus Sarcocystis is an expansive clade within the Apicomplexa, with the species S. neurona being an important cause of neurological disease in horses. Research to decipher the biology of S. neurona and its host-pathogen interactions can be enhanced by gene expression data. This study has identified conserved apicomplexan orthologs in S. neurona , putative Sarcocystis -unique genes, and gene transcripts abundant in the merozoite and schizont stages. Importantly, we have identified distinct clusters of genes with transcript levels peaking during different intracellular schizont development time points, reflecting active gene expression changes across endopolygeny. Each cluster also has subsets of transcripts with unknown functions, and investigation of these seemingly Sarcocystis -unique transcripts will provide insights into the interesting biology of this parasite genus.

Funder

U.S. Department of Agriculture

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3