Stress-Induced Cell Death Is Mediated by Ceramide Synthesis in Neurospora crassa

Author:

Plesofsky Nora S.1,Levery Steven B.2,Castle Sherry A.2,Brambl Robert1

Affiliation:

1. Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota 55108

2. Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824

Abstract

ABSTRACT The combined stresses of moderate heat shock (45°C) and analog-induced glucose deprivation constitute a lethal stress for Neurospora crassa . We found that this cell death requires fatty acid synthesis and the cofactor biotin. In the absence of the cofactor, the stressed cells are particularly sensitive to exogenous ceramide, which is lethal at low concentrations. When we extracted endogenous sphingolipids, we found that unique ceramides were induced (i) by the inhibitory glucose analog 2-deoxyglucose and (ii) by combined heat shock and 2-deoxyglucose. We determined that the former is a 2-deoxyglucose-modified ceramide. By structural analysis, we identified the latter, induced by dual stress, as C 18 (OH)-phytoceramide. We also identified C 24 (OH)-phytoceramide as a constitutive ceramide that continues to be produced during the combined stresses. The unusual C 18 (OH)-phytoceramide is not made by germinating asexual spores subjected to the same heat and carbon stress. Since these spores, unlike growing cells, do not die from the stresses, this suggests a possible connection between synthesis of the dual-stress-induced ceramide and cell death. This connection is supported by the finding that a (dihydro)ceramide synthase inhibitor, australifungin, renders cells resistant to death from these stresses. The OS-2 mitogen-activated protein kinase, homologous to mammalian p38, may be involved in the cell death signaling pathway. Strains lacking OS-2 survived the combined stresses better than the wild type, and phosphorylated OS-2 increased in wild-type cells in response to heat shock and combined heat and carbon stress.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3