Resistance Mechanisms in Clinical Isolates of Candida albicans

Author:

White Theodore C.12,Holleman Scott2,Dy Francis2,Mirels Laurence F.34,Stevens David A.34

Affiliation:

1. Department of Pathobiology, School of Public Health and Community Medicine, University of Washington

2. Seattle Biomedical Research Institute, Seattle, Washington

3. Department of Medicine, Santa Clara Valley Medical Center and California Institute for Medical Research, San Jose

4. Stanford University, Stanford, California

Abstract

ABSTRACT Resistance to azole antifungals continues to be a significant problem in the common fungal pathogen Candida albicans . Many of the molecular mechanisms of resistance have been defined with matched sets of susceptible and resistant clinical isolates from the same strain. Mechanisms that have been identified include alterations in the gene encoding the target enzyme ERG11 or overexpression of efflux pump genes including CDR1 , CDR2 , and MDR1 . In the present study, a collection of unmatched clinical isolates of C. albicans was analyzed for the known molecular mechanisms of resistance by standard methods. The collection was assembled so that approximately half of the isolates were resistant to azole drugs. Extensive cross-resistance was observed for fluconazole, clotrimazole, itraconazole, and ketoconazole. Northern blotting analyses indicated that overexpression of CDR1 and CDR2 correlates with resistance, suggesting that the two genes may be coregulated. MDR1 overexpression was observed infrequently in some resistant isolates. Overexpression of FLU1 , an efflux pump gene related to MDR1 , did not correlate with resistance, nor did overexpression of ERG11 . Limited analysis of the ERG11 gene sequence identified several point mutations in resistant isolates; these mutations have been described previously. Two of the most common point mutations in ERG11 associated with resistance, D116E and E266D, were tested by restriction fragment length polymorphism analysis of the isolates from this collection. The results indicated that the two mutations occur frequently in different isolates of C. albicans and are not reliably associated with resistance. These analyses emphasize the diversity of mechanisms that result in a phenotype of azole resistance. They suggest that the resistance mechanisms identified in matched sets of susceptible and resistant isolates are not sufficient to explain resistance in a collection of unmatched clinical isolates and that additional mechanisms have yet to be discovered.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3