Control of the serine integrase reaction: roles of the coiled-coil and helix E regions in DNA site synapsis and recombination

Author:

Mandali Sridhar1ORCID,Johnson Reid C.12ORCID

Affiliation:

1. Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737 USA

2. Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095 USA

Abstract

Bacteriophage serine integrases catalyze highly specific recombination reactions between defined DNA segments called att sites. These reactions are reversible depending upon the presence of a second phage-encoded directionality factor. The bipartite C-terminal DNA binding region of integrases includes a recombinase domain (RD) connected to a zinc-binding domain (ZD), which contains a long flexible coiled-coil (CC) motif that extends away from the bound DNA. We directly show that the identities of the phage A118 integrase att sites are specified by the DNA spacing between the RD and ZD DNA recognition determinants, which in turn, directs the relative trajectories of the CC motifs on each subunit of the att -bound integrase dimer. Recombination between compatible dimer-bound att sites requires minimal length CC motifs and 14 residues surrounding the tip where pairing of CC motifs between synapsing dimers occurs. Our alanine-scanning data suggests that molecular interactions between CC motif tips may differ in integrative ( attP x attB ) and excisive ( attL x attR ) recombination reactions. We identify mutations in 5 residues within the integrase oligomerization helix that control the remodeling of dimers into tetramers during synaptic complex formation. Whereas most of these gain-of-function mutants still require the CC motifs for synapsis, one mutant efficiently, but indiscriminantly, forms synaptic complexes without the CC motifs. However, the CC motifs are still required for recombination, suggesting a function for the CC motifs after initial assembly of the integrase synaptic tetramer. Importance The robust and exquisitely-regulated site-specific recombination reactions promoted by serine integrases are integral to the life cycle of temperate bacteriophage, and in the case of the A118 prophage, are an important virulence factor by Listeria monocytogenes . The properties of these recombinases have led to their repurposing into tools for genetic engineering and synthetic biology. In this report, we identify determinants regulating synaptic complex formation between correct DNA sites, including the DNA architecture responsible for specifying the identity of recombination sites, features of the unique coiled-coil structure on the integrase that are required to initiate synapsis, and amino acid residues on the integrase oligomerization helix that control the remodeling of synapsing dimers into a tetramer active for DNA strand exchange.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference6 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3