The Streptococcus pyogenes stand-alone regulator RofA exhibits characteristics of a PRD-containing virulence regulator

Author:

Hart Meaghan T.1ORCID,Rom Joseph S.1,Le Breton Yoann1,Hause Lara L.1,Belew Ashton T.12,El-Sayed Najib M.12ORCID,McIver Kevin S.1ORCID

Affiliation:

1. Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, College Park, Maryland, USA

2. Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA

Abstract

ABSTRACT Streptococcus pyogenes [group A streptococcus (GAS)] is a human pathogen capable of infecting diverse tissues. To successfully infect these sites, GAS must detect available nutrients and adapt accordingly. The phosphoenolpyruvate transferase system (PTS) mediates carbohydrate uptake and metabolic gene regulation to adapt to the nutritional environment. Regulation by the PTS can occur through phosphorylation of transcriptional regulators at conserved PTS-regulatory domains (PRDs). GAS has several PRD-containing stand-alone regulators with regulons encoding both metabolic genes and virulence factors [PRD-containing virulence regulators (PCVRs)]. One is RofA, which regulates the expression of virulence genes in multiple GAS serotypes. It was hypothesized that RofA is phosphorylated by the PTS in response to carbohydrate levels to coordinate virulence gene expression. In this study, the RofA regulon of M1T1 strain 5448 was determined using RNA sequencing. Two operons were consistently differentially expressed across growth in the absence of RofA; the pilus operon was downregulated, and the capsule operon was upregulated. This correlated with increased capsule production and decreased adherence to keratinocytes. Purified RofA-His was phosphorylated in vitro by PTS proteins EI and HPr, and phosphorylated RofA-FLAG was detected in vivo when GAS was grown in low-glucose C medium. Phosphorylated RofA was not observed when C medium was supplemented 10-fold with glucose. Mutations of select histidine residues within the putative PRDs contributed to the in vivo phosphorylation of RofA, although phosphorylation of RofA was still observed, suggesting other phosphorylation sites exist in the protein. Together, these findings support the hypothesis that RofA is a PCVR that may couple sugar metabolism with virulence regulation.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

American Society for Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3