The Topology of Hepatitis B Virus Pregenomic RNA Promotes Its Replication

Author:

Abraham Teresa M.12,Loeb Daniel D.1

Affiliation:

1. McArdle Laboratory for Cancer Research

2. Program in Cellular and Molecular Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706

Abstract

ABSTRACT Previous analysis of hepatitis B virus (HBV) indicated base pairing between two cis -acting sequences, the 5′ half of the upper stem of ε and φ, contributes to the synthesis of minus-strand DNA. Our goal was to identify other cis -acting sequences on the pregenomic RNA (pgRNA) involved in the synthesis of minus-strand DNA. We found that large portions of the pgRNA could be deleted or substituted without an appreciable decrease in the level of minus-strand DNA synthesized, indicating that most of the pgRNA is dispensable and that a specific size of the pgRNA is not required for this process. Our results indicated that the cis -acting sequences for the synthesis of minus-strand DNA are present near the 5′ and 3′ ends of the pgRNA. In addition, we found that the first-strand template switch could be directed to a new location when a 72-nucleotide (nt) fragment, which contained the cis -acting sequences present near the 3′ end of the pgRNA, was introduced at that location. Within this 72-nt region, we uncovered two new cis -acting sequences, which flank the acceptor site. We show that one of these sequences, named ω and located 3′ of the acceptor site, base pairs with φ to contribute to the synthesis of minus-strand DNA. Thus, base pairing between three cis -acting elements (5′ half of the upper stem of ε, φ, and ω) are necessary for the synthesis of HBV minus-strand DNA. We propose that this topology of pgRNA facilitates first-strand template switch and/or the initiation of synthesis of minus-strand DNA.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3